1.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
2.Progress on the mechanism of cartilage damage induced by T-2 toxin in Kashin-Beck disease
Cong YAO ; Shuichu HAO ; Chun ZHANG ; Jun DONG ; Yumeng JIA ; Xiong GUO
Chinese Journal of Endemiology 2024;43(5):421-424
Kashin-Beck disease (KBD) is an endemic and degenerative osteoarthropathy that can cause damage to the endochondral ossification of the limbs during development. The etiology is still unclear. In recent years, scholars at home and abroad have studied the mechanism of T-2 toxin and its metabolites causing KBD cartilage damage from the perspectives of immunotoxicity, oxidative stress, inflammatory response, cell apoptosis, etc., mainly including transforming growth factor-β receptor (TGF-βRs) signaling pathway, immune regulatory factor, inflammatory factor IL-1β and apoptosis enzyme activating factor 1 (APAF1), which promote the progression of KBD by inducing human chondrocyte injury, inhibiting matrix synthesis and accelerating cellular catabolism. This article reviews the research progress on the immunotoxicity of T-2 toxin and its toxic effects on KBD cartilage injury at the molecular level, in order to provide a scientific basis for prevention and treatment of KBD.
3.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
4.Terpinen-4-ol inhibits proliferation of VSMCs exposed to high glucose via regulating KLF4/NF-κB signaling pathway.
Li HE ; Lin ZHANG ; Ju ZHANG ; Hong JIANG ; Yong-Xiang HE ; Dong-Guo LENG ; Ying-Xin GONG ; Ding YANG ; Yan SONG ; Chuan-Yin XIONG ; Yan-Yan ZHANG
China Journal of Chinese Materia Medica 2023;48(9):2530-2537
This study aimed to observe the effect of terpinen-4-ol(T4O) on the proliferation of vascular smooth muscle cells(VSMCs) exposed to high glucose(HG) and reveal the mechanism via the Krüppel-like factor 4(KLF4)/nuclear factor kappaB(NF-κB) signaling pathway. The VSMCs were first incubated with T4O for 2 h and then cultured with HG for 48 h to establish the model of inflammatory injury. The proliferation, cell cycle, and migration rate of VSMCs were examined by MTT method, flow cytometry, and wound healing assay, respectively. The content of inflammatory cytokines including interleukin(IL)-6 and tumor necrosis factor-alpha(TNF-α) in the supernatant of VSMCs was measured by enzyme-linked immunosorbent assay(ELISA). Western blot was employed to determine the protein levels of proliferating cell nuclear antigen(PCNA), Cyclin D1, KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. The KLF4 expression in VSMCs was silenced by the siRNA technology, and then the effects of T4O on the cell cycle and protein expression of the HG-induced VSMCs were observed. The results showed that different doses of T4O inhibited the HG-induced proliferation and migration of VSMCs, increased the percentage of cells in G_1 phase, and decreased the percentage of cells in S phase, and down-regulated the protein levels of PCNA and Cyclin D1. In addition, T4O reduced the HG-induced secretion and release of the inflammatory cytokines IL-6 and TNF-α and down-regulated the expression of KLF4, NF-κB p-p65/NF-κB p65, IL-1β, and IL-18. Compared with si-NC+HG, siKLF4+HG increased the percentage of cells in G_1 phase, decreased the percentage of cells in S phase, down-regulated the expression of PCNA, Cyclin D1, and KLF4, and inhibited the activation of NF-κB signaling pathway. Notably, the combination of silencing KLF4 with T4O treatment further promoted the changes in the above indicators. The results indicate that T4O may inhibit the HG-induced proliferation and migration of VSMCs by down-regulating the level of KLF4 and inhibiting the activation of NF-κB signaling pathway.
NF-kappa B/metabolism*
;
Interleukin-18/metabolism*
;
Proliferating Cell Nuclear Antigen/genetics*
;
Cyclin D1/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Muscle, Smooth, Vascular
;
Cell Proliferation
;
Signal Transduction
;
Cytokines/metabolism*
;
Glucose/metabolism*
5.Efficacy of partial nephrectomy in patients with localized renal carcinoma: a 20-year experience of 2 046 patients in a single center.
Xiang Peng ZOU ; Kang NING ; Zhi Ling ZHANG ; Long Bin XIONG ; Yu Lu PENG ; Zhao Hui ZHOU ; Yi Xin HUANG ; Xin LUO ; Ji Bin LI ; Pei DONG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU
Chinese Journal of Surgery 2023;61(5):395-402
Objectives: To analyze the long-term survival of patients with localized renal cell carcinoma after partical nephrectomy. Methods: The clinicopathological records and survival follow-up data of 2 046 patients with localized renal cell carcinoma, who were treated with partial nephrectomy from August 2001 to February 2021 in the Department of Urology, Sun Yat-sen University Cancer Center, were retrospectively analyzed. There were 1 402 males and 644 females, aged (M(IQR)) 51 (19) years (range: 6 to 86 years). The primary end point of this study was cancer-specific survival. Survival curves were estimated using the Kaplan-Meier method, and the difference test was performed by Log-rank test. Univariate and multivariate Cox analysis were fitted to determine factors associated with cancer-specific survival. Results: The follow-up time was 49.2 (48.0) months (range: 1 to 229 months), with 1 974 patients surviving and 72 dying. The median cancer-specific survival time has not yet been reached. The 5- and 10-year cancer specific survival rates were 97.0% and 91.2%, respectively. The 10-year cancer-specific survival rates for stage pT1a (n=1 447), pT1b (n=523) and pT2 (n=58) were 95.3%, 81.8%, and 81.7%, respectively. The 10-year cancer-specific survival rates of patients with nuclear grade 1 (n=226), 2 (n=1 244) and 3 to 4 (n=278) were 96.6%, 89.4%, and 85.5%, respectively. There were no significant differences in 5-year cancer-specific survival rates among patients underwent open, laparoscopic, or robotic surgery (96.7% vs. 97.1% vs. 97.5%, P=0.600). Multivariate analysis showed that age≥50 years (HR=3.93, 95%CI: 1.82 to 8.47, P<0.01), T stage (T1b vs. T1a: HR=3.31, 95%CI: 1.83 to 5.99, P<0.01; T2+T3 vs. T1a: HR=2.88, 95%CI: 1.00 to 8.28, P=0.049) and nuclear grade (G3 to 4 vs. G1: HR=2.81, 95%CI: 1.01 to 7.82, P=0.048) were independent prognostic factors of localized renal cell carcinoma after partial nephrectomy. Conclusions: The long-term cancer-specific survival rates of patients with localized renal cancer after partial nephrectomy are satisfactory. The type of operation (open, laparoscopic, or robotic) has no significant effect on survival. However, patients with older age, higher nuclear grade, and higher T stage have a lower cancer-specific survival rate. Grasping surgical indications, attaching importance to preoperative evaluation, perioperative management, and postoperative follow-up, could benefit achieving satisfactory long-term survival.
6.Guidelines for management of pediatric acute hyperextension spinal cord injury.
Lian ZENG ; Yu-Long WANG ; Xian-Tao SHEN ; Zhi-Cheng ZHANG ; Gui-Xiong HUANG ; Jamal ALSHORMAN ; Tracy Boakye SEREBOUR ; Charles H TATOR ; Tian-Sheng SUN ; Ying-Ze ZHANG ; Xiao-Dong GUO
Chinese Journal of Traumatology 2023;26(1):2-7
Pediatric acute hyperextension spinal cord injury (SCI) named as PAHSCI by us, is a special type of thoracolumbar SCI without radiographic abnormality and highly related to back-bend in dance training, which has been increasingly reported. At present, it has become the leading cause of SCI in children, and brings a heavy social and economic burden. Both domestic and foreign academic institutions and dance education organizations lack a correct understanding of PAHSCI and relevant standards, specifications or guidelines. In order to provide standardized guidance, the expert team formulated this guideline based on the principles of science and practicability, starting from the diagnosis, differential diagnosis, etiology, admission evaluation, treatment, complications and prevention. This guideline puts forward 23 recommendations for 14 related issues.
Child
;
Humans
;
Spinal Cord Injuries/complications*
;
Spinal Cord
7.Guideline for the diagnosis and treatment of chronic refractory wounds in orthopedic trauma patients (version 2023)
Yuan XIONG ; Bobin MI ; Chenchen YAN ; Hui LI ; Wu ZHOU ; Yun SUN ; Tian XIA ; Faqi CAO ; Zhiyong HOU ; Tengbo YU ; Aixi YU ; Meng ZHAO ; Zhao XIE ; Jinmin ZHAO ; Xinbao WU ; Xieyuan JIANG ; Bin YU ; Dianying ZHANG ; Dankai WU ; Guangyao LIU ; Guodong LIU ; Qikai HUA ; Mengfei LIU ; Yiqiang HU ; Peng CHENG ; Hang XUE ; Li LU ; Xiangyu CHU ; Liangcong HU ; Lang CHEN ; Kangkang ZHA ; Chuanlu LIN ; Chengyan YU ; Ranyang TAO ; Ze LIN ; Xudong XIE ; Yanjiu HAN ; Xiaodong GUO ; Zhewei YE ; Qisheng ZHOU ; Yong LIU ; Junwen WANG ; Ping XIA ; Biao CHE ; Bing HU ; Chengjian HE ; Guanglin WANG ; Dongliang WANG ; Fengfei LIN ; Jiangdong NI ; Aiguo WANG ; Dehao FU ; Shiwu DONG ; Lin CHEN ; Xinzhong XU ; Jiacan SU ; Peifu TANG ; Baoguo JIANG ; Yingze ZHANG ; Xiaobing FU ; Guohui LIU
Chinese Journal of Trauma 2023;39(6):481-493
Chronic refractory wound (CRW) is one of the most challengeable issues in clinic due to complex pathogenesis, long course of disease and poor prognosis. Experts need to conduct systematic summary for the diagnosis and treatment of CRW due to complex pathogenesis and poor prognosis, and standard guidelines for the diagnosis and treatment of CRW should be created. The Guideline forthe diagnosis and treatment of chronic refractory wounds in orthopedic trauma patients ( version 2023) was created by the expert group organized by the Chinese Association of Orthopedic Surgeons, Chinese Orthopedic Association, Chinese Society of Traumatology, and Trauma Orthopedics and Multiple Traumatology Group of Emergency Resuscitation Committee of Chinese Medical Doctor Association after the clinical problems were chosen based on demand-driven principles and principles of evidence-based medicine. The guideline systematically elaborated CRW from aspects of the epidemiology, diagnosis, treatment, postoperative management, complication prevention and comorbidity management, and rehabilitation and health education, and 9 recommendations were finally proposed to provide a reliable clinical reference for the diagnosis and treatment of CRW.
8.Protective repair of discolored breast cancer HE sections by color transfer.
Hui Zhe WANG ; Guo Xin SUN ; Xiong YAN ; Tian Hui SU ; Jing XU ; Fei LI ; Xin LIU ; Bing Dong WANG ; Li Ming XIN ; Xiao ZOU
Chinese Journal of Pathology 2023;52(5):507-511
9.Establishment and validation of a novel nomogram to predict overall survival after radical nephrectomy.
Long Bin XIONG ; Xiang Peng ZOU ; Kang NING ; Xin LUO ; Yu Lu PENG ; Zhao Hui ZHOU ; Jun WANG ; Zhen LI ; Chun Ping YU ; Pei DONG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU ; Zhi Ling ZHANG
Chinese Journal of Oncology 2023;45(8):681-689
Objective: To establish a nomogram prognostic model for predicting the 5-, 10-, and 15-year overall survival (OS) of non-metastatic renal cell carcinoma patients managed with radical nephrectomy (RN), compare the modelled results with the results of pure pathologic staging, the Karakiewicz nomogram and the Mayo Clinic Stage, Size, Grade, and Necrosis (SSIGN) score commonly used in foreign countries, and stratify the patients into different prognostic risk subgroups. Methods: A total of 1 246 non-metastatic renal cell carcinoma patients managed with RN in Sun Yat-sen University Cancer Center (SYSUCC) from 1999 to 2020 were retrospectively analyzed. Multivariate Cox regression analysis was used to screen the variables that influence the prognosis for nomogram establishment, and the bootstrap random sampling was used for internal validation. The time-receiver operating characteristic curve (ROC), the calibration curve and the clinical decision curve analysis (DCA) were applied to evaluate the nomogram. The prediction efficacy of the nomogram and that of the pure pathologic staging, the Karakiewicz nomogram and the SSIGN score was compared through the area under the curve (AUC). Finally, patients were stratified into different risk subgroups according to our nomogram scores. Results: A total of 1 246 patients managed with RN were enrolled in this study. Multivariate Cox regression analysis showed that age, smoking history, pathological nuclear grade, sarcomatoid differentiation, tumor necrosis and pathological T and N stages were independent prognostic factors for RN patients (all P<0.05). A nomogram model named SYSUCC based on these factors was built to predict the 5-, 10-, and 15-year survival rate of the participating patients. In the bootstrap random sampling with 1 000 iterations, all these factors occurred for more than 800 times as independent predictors. The Harrell's concordance index (C-index) of SYSUCC was higher compared with pure pathological staging [0.770 (95% CI: 0.716-0.823) vs 0.674 (95% CI: 0.621-0.728)]. The calibration curve showed that the survival rate as predicted by the SYSUCC model simulated the actual rate, while the clinical DCA showed that the SYSUCC nomogram has a benefit in certain probability ranges. In the ROC analysis that included 857 patients with detailed pathological nuclear stages, the nomogram had a larger AUC (5-/10-year AUC: 0.823/0.804) and better discriminating ability than pure pathological staging (5-/10-year AUC: 0.701/0.658), Karakiewicz nomogram (5-/10-year AUC: 0.772/0.734) and SSIGN score (5-/10-year AUC: 0.792/0.750) in predicting the 5-/10-year OS of RN patients (all P<0.05). In addition, the AUC of the SYSUCC nomogram for predicting the 15-year OS (0.820) was larger than that of the SSIGN score (0.709), and there was no statistical difference (P<0.05) between the SYSUCC nomogram, pure pathological staging (0.773) and the Karakiewicz nomogram (0.826). The calibration curve was close to the standard curve, which indicated that the model has good predictive performance. Finally, patients were stratified into low-, intermediate-, and high-risk subgroups (738, 379 and 129, respectively) according to the SYSUCC nomogram scores, among whom patients in intermediate- and high-risk subgroups had a worse OS than patients in the low-risk subgroup (intermediate-risk group vs. low-risk group: HR=4.33, 95% CI: 3.22-5.81, P<0.001; high-risk group vs low-risk group: HR=11.95, 95% CI: 8.29-17.24, P<0.001), and the high-risk subgroup had a worse OS than the intermediate-risk group (HR=2.63, 95% CI: 1.88-3.68, P<0.001). Conclusions: Age, smoking history, pathological nuclear grade, sarcomatoid differentiation, tumor necrosis and pathological stage were independent prognostic factors for non-metastasis renal cell carcinoma patients after RN. The SYSUCC nomogram based on these independent prognostic factors can better predict the 5-, 10-, and 15-year OS than pure pathological staging, the Karakiewicz nomogram and the SSIGN score of patients after RN. In addition, the SYSUCC nomogram has good discrimination, agreement, risk stratification and clinical application potential.
Humans
;
Nomograms
;
Retrospective Studies
;
Carcinoma, Renal Cell/pathology*
;
Prognosis
;
Risk Factors
;
Nephrectomy
;
Kidney Neoplasms/pathology*
;
Necrosis
10.Long-term survival analysis of 1 367 patients treated with radical nephrectomy from a single center.
Xiang Peng ZOU ; Kang NING ; Zhi Ling ZHANG ; Ling ZOU ; Long Bin XIONG ; Yu Lu PENG ; Zhao Hui ZHOU ; Hui Ming LIU ; Chun Ping YU ; Pei DONG ; Sheng Jie GUO ; Hui HAN ; Fang Jian ZHOU
Chinese Journal of Oncology 2023;45(11):981-987
Objective: To report the long-term survival of renal cell carcinoma (RCC) patients treated with radical nephrectomy in Sun Yat-sen University Cancer Center. Methods: We retrospectively analyzed the clinical, pathological and follow-up records of 1 367 non-metastatic RCC patients treated with radical nephrectomy from 1999 to 2020 in this center. The primary endpoint of this study was overall survival rate. Survival curves were estimated using the Kaplan-Meier method, and group differences were compared through Log-rank test. Univariate and multivariate Cox analysis were fit to determine the clinical and pathological features associated with overall survival rate. Results: A total of 1 367 patients treated with radical nephrectomy with complete follow-up data were included in the study. The median follow-up time was 52.6 months, and 1 100 patients survived and 267 died, with the median time to overall survival not yet reached. The 5-year and 10-year overall survival rates were 82.8% and 74.9%, respectively. The 5-year and 10-year overall survival rates of Leibovich low-risk patients were 93.3% and 88.2%, respectively; of Leibovich intermediate-risk patients were 82.2% and 72.3%, respectively; and of Leibovich high-risk patients were 50.5% and 30.2%, respectively. There were significant differences in the long-term survival among the three groups (P<0.001). The 10-year overall survival rates for patients with pT1, pT2, pT3 and pT4 RCC were 83.2%, 73.6%, 55.0% and 31.4%, respectively. There were significant differences among pT1, pT2, pT3 and pT4 patients(P<0.001). The 5-year and 10-year overall survival rates of patients with lymph node metastasis were 48.5% and 35.6%, respectively, and those of patients without lymph node metastasis were 85.1% and 77.5%, respectively. There was significant difference in the long-term survival between patients with lymph node metastasis and without lymph node metastasis. The 10-year overall survival rate was 96.2% for nuclear Grade 1, 81.6% for nuclear Grade 2, 60.5% for nuclear Grade 3, and 43.4% for nuclear Grade 4 patients. The difference was statistically significant. There was no significant difference in the long-term survival between patients with localized renal cancer (pT1-2N0M0) who underwent open surgery and minimally invasive surgery (10-year overall survival rate 80.5% vs 85.6%, P=0.160). Multivariate Cox analysis showed that age≥55 years (HR=2.11, 95% CI: 1.50-2.96, P<0.001), T stage(T3+ T4 vs T1a: HR=2.37, 95% CI: 1.26-4.46, P=0.008), local lymph node metastasis (HR=3.04, 95%CI: 1.81-5.09, P<0.001), nuclear grade (G3-G4 vs G1: HR=4.21, 95%CI: 1.51-11.75, P=0.006), tumor necrosis (HR=1.66, 95% CI: 1.17-2.37, P=0.005), sarcomatoid differentiation (HR=2.39, 95% CI: 1.31-4.35, P=0.005) and BMI≥24kg/m(2) (HR=0.56, 95%CI: 0.39-0.80, P=0.001) were independent factors affecting long-term survival after radical nephrectomy. Conclusions: The long-term survival of radical nephrectomy in patients with renal cell carcinoma is satisfactory. Advanced age, higher pathological stage and grade, tumor necrosis and sarcomatoid differentiation were the main adverse factors affecting the prognosis of patients. Higher body mass index was a protective factor for the prognosis of patients.
Humans
;
Middle Aged
;
Carcinoma, Renal Cell/secondary*
;
Lymphatic Metastasis
;
Retrospective Studies
;
Neoplasm Staging
;
Kidney Neoplasms/pathology*
;
Prognosis
;
Nephrectomy
;
Survival Analysis
;
Necrosis/surgery*
;
Survival Rate

Result Analysis
Print
Save
E-mail