1.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
		                        		
		                        			
		                        			ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway. 
		                        		
		                        		
		                        		
		                        	
2.Influencing factors for delay in healthcare-seeking, definitive diagnosis, identification in patients with pulmonary tuberculosis in Minhang District
MA Qiongjin ; YAN Huiqin ; WU Yunhua ; GUO Xu ; YANG Lijia ; TANG Lihong ; YANG Shengyuan
Journal of Preventive Medicine 2025;37(1):59-64
		                        		
		                        			Objective:
		                        			To investigate the influencing factors for delay in healthcare-seeking, definitive diagnosis and identification in patients with pulmonary tuberculosis (PTB) in Minhang District, Shanghai Municipality, so as to provide the basis for effectively reducing delay in PTB patients.
		                        		
		                        			Methods:
		                        			Data of PTB patients in Minhang District from 2017 to 2022 were collected from the Infectious Disease Reporting Information System of Chinese Disease Prevention and Control Information System. The prevalence rates of delay in healthcare-seeking, definitive diagnosis and identification were analyzed, and factors affecting delay in healthcare-seeking, definitive diagnosis and identification were identified using multivariable logistic regression models.
		                        		
		                        			Results:
		                        			A total of 4 214 PTB patients were reported in Minhang District from 2017 to 2022, including 2 802 males and 1 412 females, with a male-to-female ratio of 1.98∶1. The majority of patients were aged 25 to <45 years (1 664 cases, 39.49%). The prevalence rates of delay in healthcare-seeking, definitive diagnosis and identification were 36.81%, 30.21% and 38.09%, respectively. Delay in healthcare-seeking was associated with the year (2018, OR=0.708; 2019, OR=0.549; 2020, OR=0.670; 2021, OR=0.682), gender (female, OR=1.199), occupation (worker, OR=1.379; housekeeping service/housework/unemployed, OR=1.481), case identification route (symptom-based consultation, OR=11.159), and level of the first-diagnosed hospital (city-level, OR=1.528). Delay in definitive diagnosis was associated with age (45 to <65 years, OR=1.476), occupation (commercial service, OR=0.687; housekeeping service/housework/unemployed, OR=0.672), household registration (non-local, OR=0.820), case identification route (symptom-based consultation, OR=0.616), pathogen test result (negative/not tested, OR=1.903), and the level of the first-diagnosed hospital (city-level, OR=0.311). Delay in identification was associated with the year (2018, OR=0.785; 2019, OR=0.647; 2020, OR=0.790; 2021, OR=0.710), occupation (commercial service, OR=0.687), household registration (non-local, OR=0.848) and level of the first-diagnosed hospital (city-level, OR=0.560)
		                        		
		                        			Conclusions
		                        			Year, gender, occupation, case identification route and level of the first-diagnosed hospital are influencing factors for delay in healthcare-seeking in PTB patients. Age, occupation, household registration, case identification route, pathogen test result and level of the first-diagnosed hospital are influencing factors for delay in definitive diagnosis. Year, occupation, household registration and level of the first-diagnosed hospital are influencing factors for delay in identification.
		                        		
		                        		
		                        		
		                        	
3.Evaluation of the comprehensive intervention effect on lunch for primary and secondary school students in Minhang District of Shanghai
HU Yuhuan, ZANG Jiajie, XU Huilin, GUO Qi, HAN Yan, TANG Hongmei, YING Fangjia, LIANG Hao
Chinese Journal of School Health 2025;46(2):191-195
		                        		
		                        			Objective:
		                        			To evaluate the comprehensive intervention effect of lunch for primary and secondary school students in Minhang District, so as to provide a theoretical and practical basis for lunch intervention in school.
		                        		
		                        			Methods:
		                        			From October to December 2023, a convenience sampling method was used to select 1 937 students from one primary and secondary school in Minhang District.A comprehensive intervention measure focusing on "reducing oil and salt" for lunch recipe optimization and nutrition education was carried out, and a questionnaire survey was conducted to evaluate the intervention effect three months later.  Chi square test and Wilcoxon rank test were used to compare the data before and after the intervention.
		                        		
		                        			Results:
		                        			After intervention, the use of cooking oil and salt, the supply of protein and fat in primary and secondary school lunches were reduced, and had no obvious impact on energy and other major nutrients. After intervention, compared to before intervention, the proportion of primary school students who felt that lunch was greasy decreased (8.9%, 6.2%,  χ 2=4.35), and the proportion of primary and secondary school students who felt that lunch were delicious decreased significantly (33.2%, 23.2%; 63.9%, 53.5%,  χ 2=26.39, 17.52) ( P < 0.05 ). Secondary school students also felt reduced variety of food ingredients (46.9%, 38.3%,  χ 2=16.05,  P <0.05). In addition, after intervention, the total surplus rate of primary school students  meals decreased (7.4%, 4.4%,  χ 2=5.73), mainly reflected in the decrease of the surplus rate of staple foods (7.1%, 2.4%,  χ 2=17.39), while the surplus rate of vegetable dishes increased ( 16.0 %, 21.2%,  χ 2=6.01) ( P <0.05). Although there was no significant change in the total surplus rate of meals for secondary school students, the surplus rate of staple foods decreased (12.9%, 5.4%,  χ 2=33.52), while the surplus rates of meat and vegetable dishes increased (11.2%, 26.9%; 17.5%, 33.2%,  χ 2=74.26, 61.88) ( P <0.05). After intervention, there was no statistically significant difference in the overweight and obesity rates of primary school students ( χ 2=0.11,0.43) and secondary school students ( χ 2=0.01,0.00) compared to before intervention( P >0.05). After intervention, the lung capacity of primary school students [1 564 (1 269,1 890) mL] and sitting forward flexion [11.3 (7.6, 15.2) cm] increased compared to before intervention [1 522 (1 259, 1 819 ) mL, 10.5 (6.3, 13.5) cm] ( Z =2.20, 4.68,  P <0.01), but there was no statistically significant difference in lung capacity and sitting forward flexion of secondary school students before and after intervention ( Z =-0.46, -0.08,  P >0.05).
		                        		
		                        			Conclusion
		                        			The comprehensive intervention of school lunch has promoted a significant decrease in the use of oil and salt in lunch and improved the quality of recipes, and has a positive impact on the situation of leftover lunch and the health of students to a certain extent.
		                        		
		                        		
		                        		
		                        	
4.Effect and mechanism of BYL-719 on Mycobacterium tuberculosis-induced differentiation of abnormal osteoclasts
Jun ZHANG ; Jian GUO ; Qiyu JIA ; Lili TANG ; Xi WANG ; Abudusalamu·Alimujiang ; Tong WU ; Maihemuti·Yakufu ; Chuang MA
Chinese Journal of Tissue Engineering Research 2025;29(2):355-362
		                        		
		                        			
		                        			BACKGROUND:The phosphatidylinositol 3-kinase/protein kinase(PI3K/AKT)signaling pathway plays a pivotal role in regulating osteoclast activation,which is essential for maintaining bone homeostasis.Bone destruction in osteoarticular tuberculosis is caused by aberrant osteoclastogenesis induced by Mycobacterium tuberculosis infection.However,the role of the PI3K signaling pathway in Mycobacterium tuberculosis-induced aberrant osteoclastogenesis remains unclear. OBJECTIVE:To investigate the effects and mechanisms of the PI3K/AKT signaling pathway inhibitor BYL-719 on aberrant osteoclastogenesis induced by Mycobacterium tuberculosis. METHODS:RAW264.7 cells were infected with bovine Mycobacterium tuberculosis bacillus calmette-cuerin vaccine,and Ag85B was used for cellular immunofluorescence staining.The cell counting kit-8 assay was employed to determine the safe concentration of BYL-719.There were four groups in the experiment:blank control group,BYL-719 group,BCG group,and BCG+BYL-719 group.Under the induction of receptor activator of nuclear factor kappa-B ligand,the effects of BYL-719 on post-infection osteoclast differentiation and fusion were explored through tartrate-resistant acid phosphatase staining and phalloidin staining.RT-PCR and western blot were used to detect the expression of osteoclast-related genes and proteins,and further investigate the mechanism of action. RESULTS AND CONCLUSION:Immunofluorescence staining showed that RAW264.7 cells phagocytosed Mycobacterium tuberculosis.Cell counting kit-8 data indicated that 40 nmol/L BYL-719 was non-toxic to cells.Tartrate-resistant acid phosphatase staining and phalloidin staining showed that BYL-719 inhibited the generation and fusion ability of osteoclasts following infection.RT-PCR and western blot results also indicated that BYL-719 suppressed the upregulation of osteoclast-specific genes(including c-Fos,NFATc1,matrix metalloproteinase 9,and CtsK)induced by Mycobacterium tuberculosis infection(P<0.05).Western blot and immunofluorescence staining revealed that BYL-719 inhibited excessive osteoclast differentiation induced by Mycobacterium tuberculosis by downregulating the expression of IκBα-p65.To conclude,BYL-719 inhibits aberrant osteoclastogenesis induced by Mycobacterium tuberculosis through the downregulation of IκBα/p65.Therefore,the IκBα/p65 signaling pathway is a potential therapeutic target for osteoarticular tuberculosis,and BYL-719 holds potential value for the preventing and amelioration of bone destruction in osteoarticular tuberculosis.BYL-719 has the potential to prevent and ameliorate bone destruction in osteoarticular tuberculosis.
		                        		
		                        		
		                        		
		                        	
5.Mechanism of Yishen Tongluo Formula regulating the TLR4/MyD88/NF-κB signaling pathway to ameliorate pyroptosis in diabetic nephropathy mice
Yifei ZHANG ; Zijing CAO ; Zeyu ZHANG ; Xuehui BAI ; Jingyi TANG ; Junyu XI ; Jiayi WANG ; Yiran XIE ; Yuqi WU ; Xi GUO ; Zhongjie LIU ; Weijing LIU
Journal of Beijing University of Traditional Chinese Medicine 2025;48(1):21-33
		                        		
		                        			Objective:
		                        			To investigate the mechanism of Yishen Tongluo Formula in ameliorating renal pyroptosis in diabetic nephropathy mice by regulating the toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway.
		                        		
		                        			Methods:
		                        			Sixty C57BL/6 male mice were randomly divided into control (10 mice) and intervention groups (50 mice) using random number table method. The diabetes nephropathy model was established by intraperitoneally injecting streptozotocin(50 mg/kg). After modeling, the intervention group was further divided into model, semaglutide (40 μg/kg), and high-, medium-, and low-dose Yishen Tongluo Formula groups (15.6, 7.8, and 3.9 g/kg, respectively) using random number table method. The high-, medium-, and low-dose Yishen Tongluo Formula groups were administered corresponding doses of medication by gavage, the semaglutide group received a subcutaneous injection of semaglutide injection, and the control group and model groups were administered distilled water by gavage for 12 consecutive weeks. Random blood glucose levels of mice in each group were monitored, and the 24-h urinary protein content was measured using biochemical method every 4 weeks; after treatment, the serum creatinine and urea nitrogen levels were measured using biochemical method. The weight of the kidneys was measured, and the renal index was calculated. Hematoxylin and eosin, periodic acid-Schiff, periodic Schiff-methenamine, and Masson staining were used to observe the pathological changes in renal tissue. An enzyme-linked immunosorbent assay was used to detect urinary β2-microglobulin (β2-MG), neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule-1 (KIM-1) levels. Western blotting and real-time fluorescence PCR were used to detect the relative protein and mRNA expression levels of nucleotide-binding domain leucine-rich repeat and pyrin domain-containing receptor 3 (NLRP3), Caspase-1, gasdermin D (GSDMD), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in renal tissue. Immunohistochemistry was used to detect the proportion of protein staining area of the TLR4, MyD88, and NF-κB in renal tissue.
		                        		
		                        			Results:
		                        			Compared with the control group, the random blood glucose, 24-h urinary protein, serum creatinine, urea nitrogen, and renal index of the model group increased, and the urine β2-MG, NGAL, and KIM-1 levels increased. The relative protein and mRNA expression levels of NLRP3, Caspase-1, GSDMD, IL-1β, and IL-18 in renal tissue increased, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas increased (P<0.05). Pathological changes such as glomerular hypertrophy were observed in the renal tissue of the model group. Compared with the model group, the Yishen Tongluo Formula high-dose group showed a decrease in random blood glucose after 12 weeks of treatment (P<0.05). The Yishen Tongluo Formula high- and medium-dose groups showed a decrease in 24-h urinary protein, creatinine, urea nitrogen, and renal index, as well as decreased β2-MG, NGAL, and KIM-1 levels. NLRP3, Caspase-1, GSDMD, IL-1 β, and IL-18 relative protein and mRNA expression levels were also reduced, and the proportion of TLR4, MyD88, and NF-κB protein positive staining areas was reduced (P<0.05). Pathological damage to renal tissue was ameliorated.
		                        		
		                        			Conclusion
		                        			Yishen Tongluo Formula may exert protective renal effects by inhibiting renal pyroptosis and alleviating tubular interstitial injury in diabetic nephropathy mice by regulating the TLR4/MyD88/NF-κB signaling pathway.
		                        		
		                        		
		                        		
		                        	
6.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
		                        		
		                        			
		                        			GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126. 
		                        		
		                        		
		                        		
		                        	
7.Review on separation and determination of 63Ni in solid wastes and liquid effluents from nuclear power plants
Mengyu FU ; Xinjie GUO ; Xuqin ZHANG ; Junwu TANG ; Yongshi XU ; Hongshen DING
Chinese Journal of Radiological Health 2025;34(1):142-148
		                        		
		                        			
		                        			63Ni is predominantly generated through neutron activation in nuclear reactors and is classified as a pure beta-emitting radionuclide with a half-life of 101.1 a. During decay, 63Ni emits a beta ray with an energy of 65.87 keV. 63Ni can be used in the manufacture of beta radiation sources, which are utilized as reference and working sources for beta activity measurement and beta energy response calibration. Additionally, it is used in electron capture detectors for chromatography, ionization sources in electron tubes, and electron capture probes in gas chromatography. These instruments have extensive applications in food safety, public health and epidemic prevention, soil pollution monitoring, and security. 63Ni is an artificial radionuclide not commonly found in the natural environment under normal conditions. However, the 63Ni generated during routine operations of nuclear power plants, as well as residual materials and wastes contaminated with 63Ni during plant decommissioning, may be released into the environment through liquid effluents or solid wastes. This can pose potential radiation risks to both the public and the environment. Hence, it is necessary to monitor the activity concentration of 63Ni. Currently, reports on this subject are limited in China, and there is a lack of established standards for the determination of 63Ni in nuclear power plants. This article reviews the global literature on the pretreatment and purification measurement processes of 63Ni. The merits and demerits are summarized for pretreatment methods such as acid leaching, mixed acid digestion, ashing acid leaching/dissolution, and alkali fusion, and for separation and purification methods like solvent extraction, precipitation, and extraction chromatography. The article also highlights the advantages of measurement using liquid scintillation counters. This review provides a reference for the establishment of the determination method of 63Ni in liquid effluents and solid wastes from nuclear power plants.
		                        		
		                        		
		                        		
		                        	
8.Analysis of distortion product otoacoustic emissions results of noise-exposed workers at a metal shipbuilding enterprise
Jieting ZHOU ; Jianyu GUO ; Hairu YANG ; Linyan SHU ; Zhixing FAN ; Jia TANG ; Xinqiang NIE ; Guoyong XU ; Hansheng LIN ; Bin XIAO
China Occupational Medicine 2025;52(1):99-105
		                        		
		                        			
		                        			Objective To evaluate the role of distortion product otoacoustic emissions (DPOAE) testing in evaluating early hearing loss among noise-exposed workers. Methods A total of 174 noise-exposed workers in a metal shipbuilding enterprise were selected as the research subjects by the convenience sampling method. Pure tone audiometry (PTA), DPOAE and the level of noise exposure were conducted on the workers. The rank correlation analysis was used to analyze the correlation between DPOAE amplitude and PTA threshold. The multilevel model was used to analyze the effects of gender, age, noise exposure intensity, cumulative noise exposure (CNE), hearing loss classification and PTA threshold on DPOAE results. Results At the frequencies of 0.50, 1.00, 2.00, 3.00, 4.00, 6.00 and 8.00 kHz, the DPOAE amplitude was negatively correlated with the PTA threshold (rank correlation coefficients were -0.12, -0.48, -0.47, -0.18, -0.23, -0.44, -0.19, respectively, all P<0.01). At the most frequencies, DPOAE amplitude was negatively correlated with age and CNE (all P<0.05). The results of multilevel model analysis showed that there were significant differences in DPOAE amplitudes at certain frequencies across gender, age, noise intensity, CNE, and hearing loss classification (all P<0.05). Significant differences in DPOAE responses were found among different CNE and hearing loss groups (all P<0.01). Conclusion DPOAE testing can objectively reflect the hearing status of noise-exposed workers and could be considered for inclusion in routine hearing monitoring to facilitate early detection of noise-induced hearing loss. 
		                        		
		                        		
		                        		
		                        	
9.Preparation and evaluation of quality,targeting and cytotoxicity of triptolide-loaded targeting nanoparticles
Moli YIN ; Wenbin LUO ; Jingzhe XU ; Zebo TANG ; Ni GUO ; Youxing LAO ; Huiyan WANG
China Pharmacy 2025;36(12):1457-1462
		                        		
		                        			
		                        			OBJECTIVE To prepare nanoparticle-based targeting preparation loaded with triptolide (TP), and evaluate its quality, targeting ability and cytotoxic effects. METHODS Polymer nanoparticles carrying TP-targeted folic acid (FA) receptor (TP@PLGA-PEG-FA) were fabricated using poly (lactic-co-glycolic acid)/polyethylene glycol/FA (PLGA-PEG-FA) as the carrier by emulsion and volatilization technique. The morphology and distribution were observed, and their particle size, Zeta potential, polydispersity index (PDI), drug loading capacity and encapsulation efficiency were measured. Their stability, blood compatibility, in vitro drug release, uptake by RAW264.7 cells (localization with fluorescent dye Cy3.5), and in vitro cytotoxicity were evaluated. RESULTS TP@PLGA-PEG-FA exhibited spherical shape and uniform distribution, with particle size of (122.60±0.02) nm, Zeta potential of (-17.6±0.6)mV, and PDI of 0.26±0.02; drug loading capacity and encapsulation efficiency of TP were measured to be (7.78±0.05)% and (68.62±0.03)%, respectively. The hemolysis rates of 100, 200, 300, 400 µg/mL TP@PLGA- PEG-FA were 0.77%, 0.92%, 1.34% and 1.63%, respectively. There were no significant changes in particle size, PDI and Zeta potential when TP@PLGA-PEG-FA were placed in 4 ℃ water for 14 days and in DMEM culture medium containing 10% fetal bovine serum at 37 ℃ for 12 h. The cumulative release rate of TP@PLGA-PEG-FA was (84.83±0.29)% in phosphate buffer at pH5.5 for 72 h, which was significantly higher than the cumulative release rates in phosphate buffer solutions at pH7.4 and 6.5 for 72 h ([ 42.37±0.35)% and (63.83±0.29)% , respectively] (P<0.05). Activated RAW264.7 cells took up significantly more Cy3.5@PLGA-PEG-FA than they took up Cy3.5@PLGA-PEG-FA+free FA and Cy3.5@PLGA-PEG. When the mass concentration of TP was≥15.63 ng/mL, the survival rates of activated cells in the TP@PLGA-PEG-FA groups were significantly lower than those of the same mass concentration of free TP groups (P<0.05). CONCLUSIONS The prepared TP@PLGA-PEG-FA has high stability, good blood compatibility, active targeting and cytotoxicity to inflammatory cells.
		                        		
		                        		
		                        		
		                        	
10.Influence of Gene Mutation on the Effectiveness of Arsenic-Containing Herbal Compound Formula in Treatment of Myelodysplastic Syndromes of Different TCM Patterns
Zichun WANG ; Zhuo CHEN ; Dexiu WANG ; Haiyan XIAO ; Weiyi LIU ; Ruibai LI ; Chi LIU ; Fengmei WANG ; Shanshan ZHANG ; Mingjing WANG ; Liu LI ; Xiaoqing GUO ; Hongzhi WANG ; Xudong TANG
Journal of Traditional Chinese Medicine 2025;66(14):1463-1472
		                        		
		                        			
		                        			ObjectiveTo observe the effect of gene mutation on the effectiveness of arsenic-containing Chinese herbal compound formulas in the treatment of myelodysplastic syndromes (MDS) of different traditional Chinese medicine (TCM) patterns, so as to provide the basis for the clinical application. MethodsClinical data of 442 MDS patients who were treated with arsenic-containing herbal compound formulas were retrospectively collected, including the baseline demographic and clinical characteristics of the patients. Based on the TCM four examinations, the patients were divided into the spleen-kidney deficiency group as well as the qi-yin deficiency group, and according to the results of the next-generation sequencing (NGS) test, they were divided into the group with and without gene mutation respectively. The influence of gene mutation on the clinical effectiveness of patients with different TCM patterns was analyzed, the baseline demographic and clinical characteristics of the patients with different outcomes of the two TCM patterns were compared, and multivariate Logistic regression analysis was conducted on the influencing factors of the effective rate of MDS patients with gene mutation. ResultsA total of 190 cases were included in the spleen-kidney deficiency group (119 cases with gene mutation) and 43 cases in the qi-yin deficiency group (23 cases with gene mutation). No statistically significant differences were noted in effectiveness assessment, total effective rate, and total response rate between the spleen-kidney deficiency group and the qi-yin deficiency group (P>0.05). In the spleen-kidney deficiency group, the total effective rate of MDS with gene mutation was 65.55% (78/119), which was lower than 80.28% (57/71) of MDS without gene mutation, with statistical significance (P = 0.033), while no statistical differences in effectiveness assessment and total response rate were noted (P>0.05). In the qi-yin deficiency group, no statistical differences were observed in effectiveness assessment, total effective rate, and total response rate of the patients in with or without gene mutation (P>0.05). In the spleen-kidney deficiency group with gene mutation, the rate of complex karyotype (P = 0.031) and the mutation rate of CBL gene (P = 0.032) in the ineffective population were higher than those in the effective population, while the mutation rate of DDX41 gene in the effective population was higher than that in the ineffective population (P = 0.033). No statistically significant differences were found in other gene mutations, age, gender distribution, number of gene mutations, bone marrow hyperplasia degree, blast cell range, reticular fiber tissue proliferation or not, and prognosis of chromosomal abnormalities between the effective and ineffective populations (P>0.05). In the qi-yin deficiency group with gene mutation, no statistically significant differences were found in various items between populations with different outcomes (P>0.05). Multivariate Logistic regression analysis showed that complex karyotype, CBL mutation, and DDX41 mutation were independently associated with the effective rate of MDS with spleen-kidney deficiency and gene mutation (P<0.05). DDX41 mutation was an independent protective factor in the spleen-kidney deficiency group (OR>1), while complex karyotype and CBL mutation were independent risk factors (OR<1). ConclusionThe arsenic-containing TCM compound formulas exhibited better effectiveness in MDS with spleen-kidney deficiency pattern without mutation; and in MDS with spleen-kidney deficiency pattern without complex karyotypes, CBL mutation, and with DDX41 mutations. Furthermore, DDX41 mutation was an independent protective factor in the spleen-kidney deficiency group, while complex karyotype and CBL mutation were independent risk factors. In MDS with qi-yin deficiency pattern, gene mutation-related factors showed no significant impact on the effectiveness of arsenic-containing TCM compound formulas. 
		                        		
		                        		
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail