1.Action mechanism of Coptidis Rhizoma Alkaloids against cerebral ischemia based on transcriptome sequencing
Liangliang TIAN ; Rui ZHOU ; Guangzhao CAO ; Jingjing ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(19):4161-4171
BACKGROUND:Coptis chinensis can clear heat,dry dampness,relieve fire,and detoxify.Coptis chinensis and its components have a significant protective effect on cerebral ischemia.The action mechanism of anti-cerebral ischemia of Coptidis Rhizoma Alkaloids was explored based on network pharmacology and transcriptome sequencing. OBJECTIVE:Based on the study of the protective effects of Coptidis Rhizoma Alkaloids on cerebral ischemia of rats,the action mechanism of Coptidis Rhizoma Alkaloids intervention in cerebral ischemia was investigated by using network pharmacology and transcriptome sequencing technology. METHODS:The SD rats were randomly divided into sham operation group,ischemia/reperfusion group,positive drug group,and Coptidis Rhizoma Alkaloids group.The ischemia/reperfusion model of middle cerebral artery occlusion was prepared by modified thread method in the latter three groups.No thread was inserted and the other operations were the same in the sham operation group.TTC staining,Longa 5 neurological deficient score,hematoxylin and eosin staining,and Nissl staining were used to evaluate the protective effect of Coptidis Rhizoma Alkaloids on ischemia/reperfusion model rats.Transcriptome sequencing was performed on the brain tissues of rats in sham operation group,ischemia/reperfusion group,and Coptidis Rhizoma Alkaloids group.Differentially expressed genes,gene Ontology analysis,Kyoto encyclopedia of genes and genomes analysis,and Correlation Analysis of Transcriptomics and Network Pharmacology were used to elucidate the effect of Coptidis Rhizoma Alkaloids on cerebral ischemia.Finally,ELISA and immunofluorescence staining were used to verify the key targets of Coptidis Rhizoma Alkaloids in the intervention of cerebral ischemia. RESULTS AND CONCLUSION:(1)Coptidis Rhizoma Alkaloids treatment decreased the Longa 5 neurological deficit scores and cerebral infarction area of ischemia/reperfusion model rats,increased the number of neurons and Nissl bodies.(2)Differentially expressed gene after Coptidis Rhizoma Alkaloids treatment analyzed by functional enrichment analysis of gene ontology includes biological processes such as inflammatory reaction and positive regulation of mitogen-activated protein kinase cascade.The enrichment analysis of Kyoto gene and genome encyclopedia analysis pathway mainly involves interleukin-17 signaling pathway,neuroactive ligand-receptor interaction,cyclic adenosine-3′,5′-mconophosphate signaling pathway and so on.(3)Analysis of transcriptomics showed that the main genes regulated by Coptidis Rhizoma Alkaloids were prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(4)Network pharmacology analysis revealed that nine components in Coptidis Rhizoma Alkaloids may exert their effects by associating with 87 targets related to prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(5)ELISA and immunofluorescence staining results further confirmed that Coptidis Rhizoma Alkaloids regulated the expression of prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.(6)It is concluded that Coptidis Rhizoma Alkaloids treatment can significantly improve the injury in ischemia/reperfusion model rats,possibly by regulating prostaglandin endoperoxide synthase 2,brain derived neurotrophic factor,and transient receptor potential A1.
2.Preparation and pharmacokinetics of flumazenil sublingual tablet
Yingnan ZHANG ; Cheng HOU ; Ziyi XU ; Guangzhao LU ; Ying LU ; He ZHANG
Journal of Pharmaceutical Practice and Service 2024;42(3):108-113
Objective To prepare flumazenil sublingual tablets and study its bioavailability. Methods Flumazenil sublingual tablets were prepared by compressing flumazenil inclusion compound with hydroxypropyl-β-cyclodextrin as the inclusion material. In a double-cycle crossover trial, twelve beagle dogs were randomly divided into two groups, one group receiving flumazenil sublingual tablets and the other receiving flumazenil injections. LC-MS method was developed and validated to determine flumazenil plasma concentration. The pharmacokinetic parameters and bioavailability were calculated using WinNonlin pharmacokinetic software. Results In the pharmacokinetic study, AUClast of flumazenil injection and sublingual tablet was (8.41±2.15) and (8.86±2.83) h·ng·ml−1, respectively; Cmax was (10.96±2.62) and (6.36±2.14) ng/ml, respectively; tmax was (0.18±0.05) and (0.58±0.24) h, respectively. The bioavailability of flumazenil sublingual tablet was 52.68%. Conclusion Clathrates were used to prepare flumazenil sublingual tablets to achieve safe and efficient delivery. LC-MS method was established for the determination of flumazenil plasma concentration, and the advantages were simple, accurate and sensitive.
3.Preparation and cytotoxicity of doxorubicin-containing gold nanoparticles
Ziyi XU ; Yuhan SUN ; Li FAN ; Guangzhao LU ; Yingnan ZHANG ; He ZHANG
Journal of Pharmaceutical Practice and Service 2024;42(2):73-77
Objective To construct methoxy polyethylene glycol (mPEG) modified gold nanoparticles (AuNPs) loaded with doxorubicin (DOX) AuNPs-mPEG@DOX in order to reduce the toxicity and side effects of DOX. Methods AuNPs-mPEG@DOX was prepared and characterized by Z-Average, Zeta potential and UV-Vis spectroscopy. The impact of thiol-linked DOX (HS-DOX) at various dosage concentrations on the drug adsorption rate and drug loading of AuNPs-mPEG@DOX was investigated. Furthermore, a HPLC method was developed to accurately determine the content of unadsorbed HS-DOX in AuNPs-mPEG@DOX. The specificity, linearity, precision, stability and average recovery of this method were thoroughly investigated. The cytotoxic effect of AuNPs-mPEG@DOX on MCF-10A and MCF-7 cells was evaluated using a CCK-8 assay. Results AuNPs-mPEG@DOX was successfully prepared with Z-Average of (46.12±0.49) nm, Zeta potential of (18.60±1.51) nm and the maximum absorption wavelength of 530 nm. An efficient HPLC method for the detection of unadsorbed HS-DOX in AuNPs-mPEG@DOX was devised. The optimal dosage concentration of HS-DOX for AuNPs-mPEG@DOX was determined to be 11.18 μg/ml, resulting in a drug adsorption rate of (9.21±2.88)% and a drug loading rate of (2.01±0.62)%. Cytotoxicity experiments demonstrated that AuNPs-mPEG@DOX significantly reduced the toxic and side effects of DOX on normal breast cells. Additionally, AuNPs-mPEG@DOX and free DOX exhibited comparable cytotoxic effects on breast tumor cells when DOX concentration was equal to or greater than 4.75 μmol/L. Conclusion AuNPs-mPEG@DOX effectively reduce the toxicity of DOX, providing a reference for future research on reducing the toxicity of AuNPs-linked drugs.
4.Preparation and characterization of methacryloylated hyaluronic acid/acellular Wharton's jelly composite hydrogel scaffold
Xun YUAN ; Zhengang DING ; Liwei FU ; Jiang WU ; Yazhe ZHENG ; Zhichao ZHANG ; Guangzhao TIAN ; Xiang SUI ; Shuyun LIU ; Quanyi GUO
Chinese Journal of Tissue Engineering Research 2024;28(22):3517-3523
BACKGROUND:As tissue engineering brings new hope to the worldwide problem of articular cartilage repair,the construction of light-curing 3D printed hydrogel scaffolds with biomimetic composition is of great significance for cartilage tissue engineering. OBJECTIVE:To construct a biomimetic methacryloylated hyaluronic acid/acellular Wharton's jelly composite hydrogel scaffold by digital light processing 3D printing technology,and to evaluate its biocompatibility. METHODS:Wharton's jelly was isolated and extracted from human umbilical cord,then decellulated,freeze-dried,ground into powder,and dissolved in PBS to prepare 50 g/L acellular Wharton's jelly solution.Methylallylated hyaluronic acid was prepared,lyophilized and dissolved in PBS to prepare 50 g/L methylallylated hyaluronic acid solution.Acellular Wharton's jelly solution was mixed with methacrylyacylated hyaluronic acid solution at a volume ratio of 1:1,and was used as bio-ink after adding photoinitiator.Methylacrylylated hyaluronic acid hydrogel scaffolds(labeled as HAMA hydrogel scaffolds)and methylacrylylated hyaluronic acid/acellular Wharton's jelly gel scaffolds(labeled as HAMA/WJ hydrogel scaffolds)were prepared by digital light processing 3D printing technology,and the microstructure,swelling performance,biocompatibility,and cartilage differentiation performance of the scaffolds were characterized. RESULTS AND CONCLUSION:(1)Under scanning electron microscope,the two groups of scaffolds showed a three-dimensional network structure,and the fiber connection of HAMA/WJ hydrogel scaffold was more uniform.Both groups achieved swelling equilibrium within 10 hours,and the equilibrium swelling ratio of HAMA/WJ hydrogel scaffold was lower than that of HAMA hydrogel scaffold(P<0.05).(2)CCK-8 assay showed that HAMA/WJ hydrogel scaffold could promote the proliferation of bone marrow mesenchymal stem cells compared with HAMA hydrogel scaffold.Dead/live staining showed that bone marrow mesenchymal stem cells grew well on the two groups of scaffolds,and the cells on the HAMA/WJ hydrogel scaffolds were evenly distributed and more cells were found.Phalloidine staining showed better adhesion and spread of bone marrow mesenchymal stem cells in HAMA/WJ hydrogel scaffold than in HAMA.(3)Bone marrow mesenchymal stem cells were inoculated into the two groups for chondrogenic induction culture.The results of qRT-PCR showed that the mRNA expressions of agglutinoglycan,SOX9 and type Ⅱ collagen in the HAMA/WJ hydrogel scaffold group were higher than those in the HAMA hydrogel scaffold group(P<0.05,P<0.01).(4)These findings indicate that the digital light processing 3D bioprinting HAMA/WJ hydrogel scaffold can promote the proliferation,adhesion,and chondrogenic differentiation of bone marrow mesenchymal stem cells.
5.Research progress on clinical application and quality control of sprays
Yingnan ZHANG ; Ziyi XU ; Guangzhao LU ; Ying LU ; He ZHANG
Journal of Pharmaceutical Practice and Service 2024;42(1):1-5
Sprays have gained significant attention and widespread use due to their numerous advantages, including rapid action, safety, and convenience. They are widely used in various fields such as dermatology, respiratory disease treatment, wound repair, and central nervous system targeted drug delivery. With the in-depth research of new drugs and modern pharmaceutics, the development ideas of sprays are more diverse, and the application scenarios are increasingly extensive. In this review the clinical application status of sprays and the latest research progress were summarized. Then the quality control parameters were briefly introduced,which provided reference for the research and development of sprays.
6.Oct4 promotes the progression and radioresistance of esophageal squamous cell carcinoma by regulating epithelial-mesenchymal transition
Jing ZHANG ; Minxian QI ; Yixiao LI ; Xuebing LI ; Guangzhao ZHANG ; Yamei CHAI
Chinese Journal of Oncology 2024;46(11):1019-1028
Objective:To explore the specific role and molecular mechanism of octamer-binding transcription factor 4 (Oct4) in promoting the progression of esophageal squamous cell carcinoma and radioresistance.Methods:The Gene Expression Profile Data Dynamic Analysis (GEPIA) database was used to analyze the expression differences of the Oct4 gene in different types of tumor tissues and their corresponding adjacent normal tissues. The clinical data and surgical resection tissue specimens of 196 patients with esophageal squamous cell carcinoma who received surgery combined with radiotherapy at Henan Provincial Chest Hospital from January 2013 to May 2022 were collected. Immunohistochemistry was used to detect the expression of Oct4 protein in the tumor and adjacent tissues. The lentiviral packaging system was used to construct esophageal squamous cell carcinoma cell lines that up-regulated or down-regulated Oct4. The cell counting kit 8 (CCK-8) was used to detect the cell proliferation ability, the scratch test was used to detect the cell migration ability, and the clone formation test was used to detect the cell radiosensitivity. Immunofluorescence experiment was used to detect DNA damage level, and Western blot was used to detect the expressions of Oct4, human phosphorylated histone (γ-H2AX), E-cadherin, N-cadherin, vimentin, and zinc finger E box binding homology box 1 (ZEB1).Results:The analysis of GEPIA database showed that the expression level of Oct4 mRNA in esophageal carcinoma was higher than that in paracancerous tissues. The expression level of Oct4 protein in tumor tissues was 78.35±1.42, which was higher than that in adjacent tissues (16.27±0.49). The survival time of patients with a high expression of Oct4 was significantly shorter than that of patients with a low expression of Oct4 (25.40 and 47.00 months). Compared with the control group, the proliferation ability of KYSE510 cells in the Oct4 up-regulated group was enhanced after 72-h culture, and the cell migration ability of these cells was also enhanced, with the migration rate being (41.67±1.20)% vs (23.67±1.86)% after 24-h culture. The radiosensitivity of cells in this group decreased, with the radiosensitivity enhancement ratio being 0.69±0.06 vs 1.00±0.02. After radiotherapy, the expressions of γ-H2AX and E-cadherin decreased, while the expressions of ZEB1, vimentin and N-cadherin increased. Compared with the control group, the proliferation ability of KYSE150 cells in the Oct4 down-regulated groups 1 and 2 decreased (absorbance being 2.51±0.17, 2.38±0.16, and 3.33±0.07, respectively, P<0.01) after 72-h culture, and the migration ability also decreased, with the migration rate being (13.33±0.88)%, (13.00±1.00)%, and (40.33±2.03)%, respectively (all P<0.001), after 24-h culture. The radiosensitivity was enhanced, with the radiosensitivity enhancement ratio being 1.34±0.11,1.24±0.07, and 1.00±0.02, respectively (all P<0.05). After radiotherapy, the expressions of γ-H2AX and E-cadherin increased, while the expressions of ZEB1, vimentin and N-cadherin decreased. Compared with the control group, the proliferation ability of KYSE510 cells in the ZEB1 down-regulated group decreased [absorbance being 1.33±0.15 vs 1.81±0.16 ( P=0.002)] after 72-h culture. The radiosensitivity was enhanced, with the radiosensitivity enhancement ratio being 1.37±0.11 vs 1.00±0.01 ( P=0.037), and after radiotherapy the expression of γ-H2AX increased. Conclusion:Oct4 is involved in the regulation of epithelial-mesenchymal transformation of esophageal squamous cell carcinoma, which promotes the proliferation, migration, and radioresistance of esophageal squamous cell carcinoma.
7.Analysis of Molecular Mechanism of Angong Niuhuangwan in Alleviating Traumatic Brain Injury Based on Single Cell Sequencing
Zhiru YIN ; Liangliang TIAN ; Guangzhao CAO ; Jingjing ZHANG ; Hongjun YANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(23):35-45
ObjectiveTo reveal the molecular mechanism of Angong Niuhuangwan(AGNH) in improving traumatic brain injury(TBI) based on single cell sequencing. MethodSeventy-five male SD rats were randomly divided into the sham group, model group, piracetam group(3.6 g·kg-1), AGNH low- and high-dose groups(0.09, 0.27 g·kg-1), with 15 rats in each group. In addition to the sham group, the other 4 groups used the modified Feeney free-fall impact method to prepare TBI model, and the drugs were administered by gavage immediately after modeling, 24 hours later, the modified neurological deficit score(mNSS) was performed, and brain tissue was isolated to determine the degree of cerebral edema. Hematoxylin-eosin(HE) staining was used to observe the injury degree in the cortex, CA1 region and CA3 region of brain tissue. The expression levels of cyclooxygenase-2(COX-2), interferon regulatory factor 1(IRF1), Janus kinase 2(JAK2) and suppressor of cytokine signaling 3(SOCS3) were observed by immunofluorescence(IF) staining. The levels of interleukin(IL)-6, IL-18, IL-1β, IL-17A, tumor necrosis factor-α(TNF-α), Caspase-1 and nucleotide binding oligomerization domain(NOD)-like receptor heat protein domain associated protein 3(NLRP3) inflammasome were determined by enzyme-linked immunosorbent assay(ELISA). The regulation of AGNH on each cell population was analyzed by single cell sequencing, and differentially expressed genes were analyzed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG), which led to construct microglia differentially expressed gene network to search for the key targets, and validated by ELISA and IF. ResultCompared with the sham group, the mNSS and brain water content were significantly increased in the model group(P<0.01). Compared with the model group, mNSS and brain water content in the low and high dose AGNH groups were decreased(P<0.05,P<0.01). HE staining results showed that compared with the sham group, the cells in the cerebral cortex and hippocampus of rats in the model group were seriously lost, and the cells were arranged loosely(P<0.01). Compared with the model group, AGNH could significantly increase the density of neurons in the CA1 and CA3 regions of the cerebral cortex and hippocampus, making the arrangement more compact, as well as improved cell morphology(P<0.05,P<0.01). ELISA and IF staining showed that AGNH could reduce the levels of Caspase-1, IL-17A, TNF-α, NLRP3 and COX-2 in brain tissue of TBI rats(P<0.05, P<0.01). A total of 13 cell subsets were identified by single cell sequencing, among which microglia played an important role in neuroimmunity. The results of GO enrichment analysis of differentially expressed genes in microglia showed that AGNH improved TBI in response to inflammation and TNF-α. KEGG enriched IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, etc. The results of network analysis showed that the key targets of AGNH in regulating TBI might be IL-6, IL-1β, JAK2, SOCS3, IRF1. IF and ELISA verification results showed that compared with the sham group, SOCS3 expression in microglia was decreased in the model group, and the expressions of IL-6, IL-1β, JAK2 and IRF1 were increased(P<0.01). Compared with the model group, AGNH could increase the expression of SOCS3, decrease the expression of IL-6, IL-1β, JAK2, IRF1 (P<0.05, P<0.01). ConclusionAGNH can reduce the degree of brain edema and brain injury, decrease the expression of inflammatory factors, and inhibit the expression of NLRP3 and its downstream Caspase-1 in TBI rats, which may act on the targets of IL-6, IL-1β, JAK2, IRF1 and SOCS3 in microglia.
8.Oct4 promotes the progression and radioresistance of esophageal squamous cell carcinoma by regulating epithelial-mesenchymal transition
Jing ZHANG ; Minxian QI ; Yixiao LI ; Xuebing LI ; Guangzhao ZHANG ; Yamei CHAI
Chinese Journal of Oncology 2024;46(11):1019-1028
Objective:To explore the specific role and molecular mechanism of octamer-binding transcription factor 4 (Oct4) in promoting the progression of esophageal squamous cell carcinoma and radioresistance.Methods:The Gene Expression Profile Data Dynamic Analysis (GEPIA) database was used to analyze the expression differences of the Oct4 gene in different types of tumor tissues and their corresponding adjacent normal tissues. The clinical data and surgical resection tissue specimens of 196 patients with esophageal squamous cell carcinoma who received surgery combined with radiotherapy at Henan Provincial Chest Hospital from January 2013 to May 2022 were collected. Immunohistochemistry was used to detect the expression of Oct4 protein in the tumor and adjacent tissues. The lentiviral packaging system was used to construct esophageal squamous cell carcinoma cell lines that up-regulated or down-regulated Oct4. The cell counting kit 8 (CCK-8) was used to detect the cell proliferation ability, the scratch test was used to detect the cell migration ability, and the clone formation test was used to detect the cell radiosensitivity. Immunofluorescence experiment was used to detect DNA damage level, and Western blot was used to detect the expressions of Oct4, human phosphorylated histone (γ-H2AX), E-cadherin, N-cadherin, vimentin, and zinc finger E box binding homology box 1 (ZEB1).Results:The analysis of GEPIA database showed that the expression level of Oct4 mRNA in esophageal carcinoma was higher than that in paracancerous tissues. The expression level of Oct4 protein in tumor tissues was 78.35±1.42, which was higher than that in adjacent tissues (16.27±0.49). The survival time of patients with a high expression of Oct4 was significantly shorter than that of patients with a low expression of Oct4 (25.40 and 47.00 months). Compared with the control group, the proliferation ability of KYSE510 cells in the Oct4 up-regulated group was enhanced after 72-h culture, and the cell migration ability of these cells was also enhanced, with the migration rate being (41.67±1.20)% vs (23.67±1.86)% after 24-h culture. The radiosensitivity of cells in this group decreased, with the radiosensitivity enhancement ratio being 0.69±0.06 vs 1.00±0.02. After radiotherapy, the expressions of γ-H2AX and E-cadherin decreased, while the expressions of ZEB1, vimentin and N-cadherin increased. Compared with the control group, the proliferation ability of KYSE150 cells in the Oct4 down-regulated groups 1 and 2 decreased (absorbance being 2.51±0.17, 2.38±0.16, and 3.33±0.07, respectively, P<0.01) after 72-h culture, and the migration ability also decreased, with the migration rate being (13.33±0.88)%, (13.00±1.00)%, and (40.33±2.03)%, respectively (all P<0.001), after 24-h culture. The radiosensitivity was enhanced, with the radiosensitivity enhancement ratio being 1.34±0.11,1.24±0.07, and 1.00±0.02, respectively (all P<0.05). After radiotherapy, the expressions of γ-H2AX and E-cadherin increased, while the expressions of ZEB1, vimentin and N-cadherin decreased. Compared with the control group, the proliferation ability of KYSE510 cells in the ZEB1 down-regulated group decreased [absorbance being 1.33±0.15 vs 1.81±0.16 ( P=0.002)] after 72-h culture. The radiosensitivity was enhanced, with the radiosensitivity enhancement ratio being 1.37±0.11 vs 1.00±0.01 ( P=0.037), and after radiotherapy the expression of γ-H2AX increased. Conclusion:Oct4 is involved in the regulation of epithelial-mesenchymal transformation of esophageal squamous cell carcinoma, which promotes the proliferation, migration, and radioresistance of esophageal squamous cell carcinoma.
9.Advances in medicinal research on tetrodotoxin
Qi WANG ; Li FAN ; Guangzhao LU ; He ZHANG ; Wen CAO ; Ying LU
Journal of Pharmaceutical Practice 2023;41(5):273-276
Tetrodotoxin (TTX) is a neurotoxin found in puffer fish and other marine organisms. It has been used as an inhibitor of voltage-gated sodium channels (VGSCs), which could selectively bind to the α-subunit on the outer vestibule of VGSCs, preventing sodium ions from entering the channel, resulting in pharmacological activities. As a typical sodium channel blocker, TTX shows a significant analgesic effect. TTX could selectively block Na+ channels without affecting other ion channels, therefore it could reduce the probability of adverse reactions caused by commonly used antiarrhythmic drugs. In addition, TTX has a significant role in detoxification and prevention of renal failure, so TTX has great potential as a medicine. The structure and physicochemical properties, mechanism of action, pharmacological activities and preparations of tetrodotoxin have been reviewed in this paper, so as to provide a general support for the evaluation of its druggability and application in the field of pharmacy.
10.Establishment of determination of tetrodotoxin sustained-release microspheres
Qi WANG ; Guangzhao LU ; Yuan LI ; Li FAN ; He ZHANG ; Ying LU
Journal of Pharmaceutical Practice 2023;41(3):182-186
Objective To establish a detection method for the determination of tetrodotoxin (TTX) in sustained-release microspheres. Methods The HPLC separation of tetrodotoxin was performed on an Agilent ZORBAX SB-C18 column (4.6mm×150mm,5 μm) with acetonitrile, 8mmol/L sodium heptane sulfonate containing 0.005% TFA (5:95) (pH 4.0) as the mobile phase. The flow rate was 1.0 ml/min. The UV detection wavelength was 200 nm and the column temperature was 30 °C. Results The method had good specificity and linearity of TTX in the concentration range of 1−20 μg/ml. The intra-day precision, inter-day precision, stability and repeatability of the method were good, and the average recoveries were found between 98.0% and 102.0%. Conclusion This study established an HPLC method which was suitable for the determination of tetrodotoxin sustained-release microspheres. The method is accurate and reliable within the applicable range, with strong specificity, which could lead to quantitative detection.

Result Analysis
Print
Save
E-mail