1.Tumor-targeted metabolic inhibitor prodrug labelled with cyanine dyes enhances immunoprevention of lung cancer.
Wen LI ; Jiali HUANG ; Chen SHEN ; Weiye JIANG ; Xi YANG ; Jingxuan HUANG ; Yueqing GU ; Zhiyu LI ; Yi MA ; Jinlei BIAN
Acta Pharmaceutica Sinica B 2024;14(2):751-764
Recent progress in targeted metabolic therapy of cancer has been limited by the considerable toxicity associated with such drugs. To address this challenge, we developed a smart theranostic prodrug system that combines a fluorophore and an anticancer drug, specifically 6-diazo-5-oxo-l-norleucine (DON), using a thioketal linkage (TK). This system enables imaging, chemotherapy, photodynamic therapy, and on-demand drug release upon radiation exposure. The optimized prodrug, DON-TK-BM3, incorporating cyanine dyes as the fluorophore, displayed potent reactive oxygen species release and efficient tumor cell killing. Unlike the parent drug DON, DON-TK-BM3 exhibited no toxicity toward normal cells. Moreover, DON-TK-BM3 demonstrated high tumor accumulation and reduced side effects, including gastrointestinal toxicity, in mice. This study provides a practical strategy for designing prodrugs of metabolic inhibitors with significant toxicity stemming from their lack of tissue selectivity.
2.Establishment of specific chromatogram,chemical pattern recognition analysis and identification with different origins and counterfeit products of Uncariae Ramulus Cum Uncis
Yuqing HE ; Shengjun CHEN ; Haiqin ZHOU ; Run QIAN ; Chao GU ; Simei XIE ; Hongmei WEN
China Pharmacy 2024;35(5):566-571
OBJECTIVE To establish the ultra-high liquid chromatography (UPLC) characteristic spectrum of Uncariae Ramulus Cum Uncis from different producing areas, to conduct chemical pattern recognition analysis, and to identify the medicinal materials of their different origins and counterfeit products. METHODS UPLC method was adopted to establish the characteristic spectra of 43 batches of Uncariae Ramulus Cum Uncis from different origins; cluster analysis combined with principal component analysis were used to analyze their quality; Uncariae Ramulus Cum Uncis from different origins and counterfeit products were identified. RESULTS UPLC specific spectrum of Uncariae Ramulus Cum Uncis was established, and 13 common peaks were calibrated; peak 2 was identified as catechin, peak 3 as chlorogenic acid, peak 4 as cryptochlorogenic acid, peak 7 as isochlorogenic acid B, peak 8 as isodehydroguotenine, peak 9 as isooguotenine, peak 10 as dehydroguotenine, peak 11 as isochlorogenic acid C, peak 12 as goutenine, and peak 13 as camptothecin. Through cluster analysis, the medicinal materials of 43 batches of Uncariae Ramulus Cum Uncis could be divided into 5 categories according to their different origins. Further principal component analysis revealed that the principal component comprehensive scores of Uncariae Ramulus Cum Uncis produced in Jiangxi and Hunan were relatively high, ranging from 0.264 to 2.904. The specific chromatogram could effectively distinguish among the different origins and their counterfeit products of Uncariae Ramulus Cum Uncis. CONCLUSIONS The established UPLC specific chromatogram can be used for quality control of Uncariae Ramulus Cum Uncis, and the study found that the quality of Uncariae Ramulus Cum Uncis from Jiangxi and Hunan provinces is relatively good.
3.Superior vena cava syndrome and pulmonary artery stenosis in a patient with lung metastases of bladder cancer
Jian-Ke LI ; Ya-Nan GU ; Jun-Hao LI ; Liang-Wen WANG ; Ning-Zi TIAN ; Wei CHEN ; Xiao-Lin WANG ; Yi CHEN
Fudan University Journal of Medical Sciences 2024;51(2):277-279,284
Superior vena cava syndrome(SVCS)is a group of clinical syndromes caused by obstruction of the superior vena cava and its major branches from various causes.Pulmonary artery stenosis(PS)is a complication of lung cancer or mediastinal tumours.SVCS combined with PS due to pulmonary metastases from bladder cancer is extremely rare and has not been reported in the literature.Here we reported an old male patient with pulmonary metastases from bladder cancer presenting with swelling of the head,neck and both upper limbs.SVCS combined with PS was clarified by pulmonary artery computed tomography angiography(CTA)and digital subtraction angiography(DSA).Endovascular stenting was used to treat SVCS.Angiography also showed that PS had not caused pulmonary hypertension and did not need to be treated.The swelling of the patient's head,neck and upper limbs was gradually reduced after the procedure.
4.Mid-to-long term fate of neo-aortic root after arterial switch operation for Taussig-Bing anomaly: A retrospective study in a single center
Mingjun GU ; Dian CHEN ; Renjie HU ; Jie HU ; Wei DONG ; Wen ZHANG ; Qi JIANG ; Yifan ZHU ; Haibo ZHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(04):504-509
Objective To explore growth pattern of neo-aortic root as well as development of neo-aortic regurgitation after arterial switch operation (ASO) for Taussig-Bing anomaly. Methods From 2002 to 2017, the patients who received ASO, and were discharged alive from Shanghai Children’s Medical Center and followed up for more than 3 years were retrospectively involved in this study. Results A total of 127 patients were enrolled. There were 98 (77.2%) males, the median age at ASO was 73.0 d and the average weight was 4.7 kg. Forty-five (35.4%) children were complicated with mild or mild-to-moderate pulmonary insufficiency (PI) before ASO. The average follow-up time was 7.0 years. During the follow-up, 14 (11.0%) children presented moderate or greater neo-aortic regurgitation (neo-AR). The diameter of neo-aortic annulus and sinus of Valsalva was beyond normal range during the entire follow-up. The average diameter of neo-aortic annulus was 18.0 mm at 5 years and 20.5 mm at 10 years. The average diameter of sinus of Valsalva was 25.9 mm at 5 years and 31.1 mm at 10 years. Neo-AR continued to develop over time. The diameter of children who developed moderate or greater neo-AR was constantly larger than that of children who did not (χ2=18.3, P<0.001). Preoperative mild or mild-to-moderate PI was an independent risk factor for the development of moderate or greater neo-AR during mid-to-long term follow-up (c-HR=3.46, P=0.03). Conclusion The diameters of neo-aortic annulus and sinus of Valsalva of Taussig-Bing children who receive ASO repair continue to expand without normalization. The dilation of annulus correlates with the development of neo-AR. PI before ASO repair increases the risk of neo-AR development.
5.Efficacy and feasibility of tunnel esophagogastrostomy to perform proximal gastrectomy
Chao YUE ; Rui PENG ; Guangli SUN ; Liang CHEN ; Haitian WANG ; Weiguo XU ; Wei WEI ; Bin ZHOU ; Xu WEN ; Rongmin GU ; Xuezhi MING ; Huanqiu CHEN ; Gang LI
Chinese Journal of Gastrointestinal Surgery 2024;27(10):1045-1049
Objective:To analyze the efficacy and feasibility of performing a new surgical procedure, tunnel esophagogastrostomy, to perform proximal gastrectomy.Methods:The study cohort comprised 10 consecutive patients who had undergone esophagogastrostomy by the tunnel technique in Jiangsu Cancer Hospital between October 2019 and July 2022. All patients were male. Their average age was (64.2±8.1) years and body mass index (25.5±3.2) kg/m2. Nine had upper gastric body adenocarcinoma, the remaining one having signet ring cell carcinoma. TNM staging of the tumors showed that seven were Stage IA, one Stage IB, one Stage IIA, and one Stage IIIA. Briefly, tunnel esophagogastrostomy is performed as follows: After performing a proximal gastrectomy, a rectangular seromuscular flap (3.0 cm × 3.5 cm) is created. The posterior esophageal wall is sutured to the gastric wall at the orad end of the seromuscular flap 5 cm from the stump with three to four stitches. Next, the stump of the esophagus is opened, the posterior esophageal wall is sutured to the gastric mucosa and submucosa, and the anterior esophageal wall is sutured to the full layer of the stomach. Finally, the caudad end of the seromuscular flap is closed. Data on surgical safety, postoperative morbidity, and postoperative reflux esophagitis were analyzed. All enrolled patients completed endoscopic follow-up 1 year and 2 years after surgery.Results:All procedures were completed. They comprised four cases of laparoscopic assisted surgery, four of DaVinci robotic surgery, and two of open surgery. The mean operation time was 212.7±33.2 mins, mean anastomosis time (51.6±5.3) minutes, mean tunnel preparation time (20.0±3.5) minutes, and mean operative blood loss (90.0±51.6) mL. The time to first postoperative passage of flatus was (64.8±11.5) hours. The mean hospital stay after surgery was (9.2±1.7) days. There were no postoperative complications above Clavien-Dindo Grade II. The mean preoperative Reflux Disease Questionnaire score was (3.3± 0.4) before the surgery, (3.8±1.0) 1 month postoperatively, and (3.3±0.4) 12 months postoperatively. All patients underwent endoscopic follow-up; no anastomotic stenoses were found. However, one patient had Grade A reflux esophagitis 1 year after surgery and another Grade B reflux esophagitis 2 years after surgery.Conclusion:Esophagogastrostomy by the tunnel technique is a safe and feasible means of performing proximal gastrectomy.
6.Transcatheter edge-to-edge repair in acute mitral regurgitation following acute myocardial infarction:a case report
Tong KAN ; Xing-Hua SHAN ; Song-Hua LI ; Fei-Fei DONG ; Ke-Yu CHEN ; Hua WANG ; Rui BAO ; Sai-Nan GU ; Yong-Wen QIN ; Yuan BAI
Chinese Journal of Interventional Cardiology 2024;32(11):658-660
Acute mitral regurgitation(MR)in the setting of myocardial infarction(MI)may be the result of papillary muscle rupture(PMR).The clinical presentation can be catastrophic,with refractory cardiogenic shock.This condition is associated with high morbidity and mortality.Transcatheter edge-to-edge repair(TEER)has become increasingly common in treating severe mitral regurgitation.This case details a successful TEER is feasible and safe in patients with acute MR following MI.TEER is an emerging treatment option in this clinical scenario that should be taken into consideration.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail