1.Identification and drug sensitivity analysis of key molecular markers in mesenchymal cell-derived osteosarcoma
Haojun ZHANG ; Hongyi LI ; Hui ZHANG ; Haoran CHEN ; Lizhong ZHANG ; Jie GENG ; Chuandong HOU ; Qi YU ; Peifeng HE ; Jinpeng JIA ; Xuechun LU
Chinese Journal of Tissue Engineering Research 2025;29(7):1448-1456
BACKGROUND:Osteosarcoma has a complex pathogenesis and a poor prognosis.While advancements in medical technology have led to some improvements in the 5-year survival rate,substantial progress in its treatment has not yet been achieved. OBJECTIVE:To screen key molecular markers in osteosarcoma,analyze their relationship with osteosarcoma treatment drugs,and explore the potential disease mechanisms of osteosarcoma at the molecular level. METHODS:GSE99671 and GSE284259(miRNA)datasets were obtained from the Gene Expression Omnibus database.Differential gene expression analysis and Weighted Gene Co-expression Network Analysis(WGCNA)on GSE99671 were performed.Functional enrichment analysis was conducted using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes separately for the differentially expressed genes and the module genes with the highest positive correlation to the disease.The intersection of these module genes and differentially expressed genes was taken as key genes.A Protein-Protein Interaction network was constructed,and correlation analysis on the key genes was performed using CytoScape software,and hub genes were identified.Hub genes were externally validated using the GSE28425 dataset and text validation was conducted.The drug sensitivity of hub genes was analyzed using the CellMiner database,with a threshold of absolute value of correlation coefficient|R|>0.3 and P<0.05. RESULTS AND CONCLUSION:(1)Differential gene expression analysis identified 529 differentially expressed genes,comprising 177 upregulated and 352 downregulated genes.WGCNA analysis yielded a total of 592 genes with the highest correlation to osteosarcoma.(2)Gene Ontology enrichment results indicated that the development of osteosarcoma may be associated with extracellular matrix,bone cell differentiation and development,human immune regulation,and collagen synthesis and degradation.Kyoto Encyclopedia of Genes and Genomes enrichment results showed the involvement of pathways such as PI3K-Akt signaling pathway,focal adhesion signaling pathway,and immune response in the onset of osteosarcoma.(3)The intersection analysis revealed a total of 59 key genes.Through Protein-Protein Interaction network analysis,8 hub genes were selected,which were LUM,PLOD1,PLOD2,MMP14,COL11A1,THBS2,LEPRE1,and TGFB1,all of which were upregulated.(4)External validation revealed significantly downregulated miRNAs that regulate the hub genes,with hsa-miR-144-3p and hsa-miR-150-5p showing the most significant downregulation.Text validation results demonstrated that the expression of hub genes was consistent with previous research.(5)Drug sensitivity analysis indicated a negative correlation between the activity of methotrexate,6-mercaptopurine,and pazopanib with the mRNA expression of PLOD1,PLOD2,and MMP14.Moreover,zoledronic acid and lapatinib showed a positive correlation with the mRNA expression of PLOD1,LUM,MMP14,PLOD2,and TGFB1.This suggests that zoledronic acid and lapatinib may be potential therapeutic drugs for osteosarcoma,but further validation is required through additional basic experiments and clinical studies.
2.Mechanisms by which microgravity causes osteoporosis
Dejian XIANG ; Xiaoyuan LIANG ; Shenghong WANG ; Changshun CHEN ; Cong TIAN ; Zhenxing YAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(10):2132-2140
BACKGROUND:The imbalance between bone resorption and bone formation in microgravity environments leads to significant bone loss in astronauts.Current research indicates that bone loss under microgravity conditions is the result of the combined effects of various cells,tissues,and systems. OBJECTIVE:To review different biological effects of microgravity on various cells,tissues,or systems,and summarize the mechanisms by which microgravity leads to the development of osteoporosis. METHODS:Databases such as PubMed,Web of Science,and the Cochrane Database were searched for relevant literature from 2000 to 2023.The inclusion criteria were all articles related to tissue engineering studies and basic research on osteoporosis caused by microgravity.Ultimately,85 articles were included for review. RESULTS AND CONCLUSION:(1)In microgravity environment,bone marrow mesenchymal stem cells tend to differentiate more into adipocytes rather than osteoblasts,and hematopoietic stem cells in this environment are more inclined to differentiate into osteoclasts,reducing differentiation into the erythroid lineage.At the same time,microgravity inhibits the proliferation and differentiation of osteoblasts,promotes apoptosis of osteoblasts,alters cell morphology,and reduces the mineralization capacity of osteoblasts.Microgravity significantly increases the number and activity of osteoclasts.Microgravity also hinders the differentiation of osteoblasts into osteocytes and promotes the apoptosis of osteocytes.(2)In a microgravity environment,the body experiences changes such as skeletal muscle atrophy,microvascular remodeling,bone microcirculation disorders,and endocrine disruption.These changes lead to mechanical unloading in the bone microenvironment,insufficient blood perfusion,and calcium cycle disorders,which significantly impact the development of osteoporosis.(3)At present,the mechanism by which microgravity causes osteoporosis is relatively complex.A deeper study of these physiological mechanisms is crucial to ensuring the health of astronauts during long-term space missions,and provides a theoretical basis for the prevention and treatment of osteoporosis.
3.Effects of erythropoietin on restorative dentin formation and expression of bone morphogenetic protein 2 after pulp injury
Ruiqing CHENG ; Honglei SUN ; Shuangshuang GENG ; Chao WANG ; Junke LI ; Yanfang CHEN
Chinese Journal of Tissue Engineering Research 2025;29(11):2231-2242
BACKGROUND:Erythropoietin has anti-inflammatory,anti-apoptotic,and pro-bone defect repair effects.To date,fewer studies have been conducted on its effects and molecular mechanism underlying restorative dentin formation after pulp injury. OBJECTIVE:To explore the effect of erythropoietin on restorative dentin formation after pulp injury. METHODS:(1)Animal experiment:Thirty-two rats were randomly divided into control group(n=16)and experimental group(n=16).In the experimental group,collagen sponges containing erythropoietin were used to directly cap the pulp at the pulp injury,and in the control group,collagen sponges containing PBS were used to directly cap the pulp at the exposed pulp injury.The cavity was then closed with glass ionomer adhesive.After 2 and 4 weeks of treatment,the maxillary bones of the two groups were collected,and the expression of nestin in dentin was detected by immunohistochemistry,and the reparative dentin production was observed by hematoxylin-eosin staining.The maxillae of four Sprague-Dawley rats were taken for immunohistochemical detection of erythropoietin expression in molar and incisor teeth.(2)Cell experiment:Human dental pulp cells,human periodontal ligament cells and human gingival fibroblasts were obtained from human dental tissue,periodontal ligament,and gingival tissue.Real-time reverse transcription PCR(RT-PCR)was used to detect the mRNA expression of erythropoietin.Erythropoietin,dentin sialophosphoprotein,dentin matrix protein 1,and nestin mRNA levels in human pulp cells were detected by RT-PCR under induced or uninduced odontoblastic differentiation.After down-regulation of erythropoietin expression or exogenous administration of erythropoietin intervention under induced or uninduced differentiation odontoblastic differentiation,the relative mRNA expression of dentin sialophosphoprotein and dentin matrix protein 1 in human pulp cells was detected by RT-PCR,and the formation of mineralized nodules was detected by alizarin red S staining,and mRNA and protein expressions of bone morphogenetic protein 2 were detected by RT-PCR and western blot,respectively. RESULTS AND CONCLUSION:(1)Animal experiment:Compared with the control group,the restorative dentin production and nestin expression were higher in the experimental group after 2 and 4 weeks of treatment.The expression of erythropoietin was weakly positive in pulp,odontoblastic cell layer and periodontal membrane of the rat's first maxillary molar,and strongly positive in odontoblasts.(2)Cell experiment:The mRNA expression of erythropoietin was higher in human dental pulp cells than in the other two types of cells.The mRNA expressions of dentin sialophosphorin,dentin matrix protein 1,nestin,erythropoietin and bone morphogenetic protein 2 in human pulp cells increased and the formation of mineralized nodules during odontoblastic differentiation under induction compared with non-induction conditions.The mRNA expression of dentin sialophosphoprotein,dentin matrix protein 1,nestin,bone morphogenetic protein 2 and the formation of mineralized nodules were decreased in human pulp cells after downregulation of erythropoietin under induced odontoblastic differentiation,and the protein expression of bone morphogenetic protein 2 was also decreased.After exogenous erythropoietin intervention,the expression of the above indexes in human dental pulp cells increased.To conclude,erythropoietin can promote the formation of dentin to some extent.
4.Expression of peroxiredoxin 4 in oral squamous cell carcinoma and its effects on cancer cell proliferation, migration, and invasion
GENG Hua ; LI Lei ; YANG Jie ; LIU Yunxia ; CHEN Xiaodong
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(4):278-288
Objective:
To investigate the expression of peroxiredoxin 4 (PRDX4) in oral squamous cell carcinoma (OSCC) and its effect on the proliferation, migration, and invasion of OSCC cells.
Methods:
The Cancer Genome Atlas(TCGA) database was used to analyze the expression of PRDX4 in OSCC. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western Blot (WB) were used to detect the mRNA and protein expression of PRDX4 in OSCC cell lines and normal oral mucosal epithelial cells. PRDX4 was knocked down in CAL-27 cells and divided into two groups: the si-PRDX4 group and si-NC group. SCC-9 cells overexpressing PRDX4 were divided into two groups: the PRDX4 overexpression group (transfected with pcDNA3.1-PRDX4 plasmid) and the vector group (the control group; transfected with pcDNA3.1-NC plasmid). A cell counting kit-8 (CCK-8) and plate colony formation assay were used to detect cell proliferation. Transwell assay and cell scratch test were used to detect cell invasion and migration ability. WB was used to detect the effects of knockdown or overexpression of PRDX4, p38MAPK agonist or inhibitor on the expression of p38MAPK-related signaling pathway proteins, and epithelial mesenchymal transition proteins in OSCC cells.
Results:
PRDX4 was highly expressed in OSCC tissues and cell lines. The results of qRT-PCR and WB showed that PRDX4 was highly expressed in OSCC cell lines compared with normal oral mucosal epithelial cells. The CCK-8 assay showed that the si-PRDX4 group had significantly lower OD values than the si-NC group at 24, 48, and 72 h (P<0.05). The PRDX4 overexpression group had a significantly higher OD value than the vector group at 24, 48, and 72 h (P<0.05). The plate colony formation assay showed that the si-PRDX4 group had a significantly lower number of colonies than the si-NC group (P<0.05). The number of colonies formed in the PRDX4 overexpression group was significantly higher than that in the vector group (P<0.05). The cell scratch test showed that the wound healing area of the si-PRDX4 group was less than that of the si-NC group (P<0.05). The scratch healing area of the PRDX4 overexpression group was significantly higher than that of the vector group (P<0.05). The Transwell invasion assay showed that the number of transmembrane cells in the si-PRDX4 group was lower than that in the si-NC group (P<0.05). The number of transmembrane cells in the PRDX4 overexpression group was significantly higher than that in the vector group (P<0.05). The WB results showed that knockdown and overexpression of PRDX4 could downregulate and upregulate the expression of the p38MAPK signaling pathway and epithelial-mesenchymal transition related proteins, respectively, and the addition of p38MAPK agonist and inhibitor could significantly reverse the expression of related proteins.
Conclusion
PRDX4 is highly expressed in OSCC. Knocking down the expression of PRDX4 in OSCC cells can downregulate the expression of p38 MAPK signal axis and EMT-related signal proteins, thereby inhibiting the proliferation, migration, invasion, and epithelial-mesenchymal transition of cells.
5.Research on Magnetic Stimulation Intervention Technology for Alzheimer’s Disease Guided by Heart Rate Variability
Shu-Ting CHEN ; Du-Yan GENG ; Chun-Meng FAN ; Wei-Ran ZHENG ; Gui-Zhi XU
Progress in Biochemistry and Biophysics 2025;52(5):1264-1278
ObjectiveNon-invasive magnetic stimulation technology has been widely used in the treatment of Alzheimer’s disease (AD), but there is a lack of convenient and timely methods for evaluating and providing feedback on the effectiveness of the stimulation, which can be used to guide the adjustment of the stimulation protocol. This study aims to explore the possibility of heart rate variability (HRV) in diagnosing AD and guiding AD magnetic stimulation intervention techniques. MethodsIn this study, we used a 40 Hz, 10 mT pulsed magnetic field to expose AD mouse models to whole-body exposure for 18 d, and detected the behavioral and electroencephalographic signals before and after exposure, as well as the instant electrocardiographic signals after exposure every day. ResultsUsing one-way ANOVA and Pearson correlation coefficient analysis, we found that some HRV indicators could identify AD mouse models as accurately as behavioral and electroencephalogram(EEG) changes (P<0.05) and significantly distinguish the severity of the disease (P<0.05), including rMSSD, pNN6, LF/HF, SD1/SD2, and entropy arrangement. These HRV indicators showed good correlation and statistical significance with behavioral and EEG changes (r>0.3, P<0.05); HRV indicators were significantly modulated by the magnetic field exposure before and after the exposure, both of which were observed in the continuous changes of electrocardiogram (ECG) (P<0.05), and the trend of the stimulation effect was more accurately observed in the continuous changes of ECG. ConclusionHRV can accurately reflect the pathophysiological changes and disease degree, quickly evaluate the effect of magnetic stimulation, and has the potential to guide the pattern of magnetic exposure, providing a new idea for the study of personalized electromagnetic neuroregulation technology for brain diseases.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.An analysis of risk factors for mortality in patients with bloodstream infections caused by carbapenem-resistant Klebsiella pneumoniae
Qiuli ZHU ; Miaomiao GENG ; Ju WEI ; Yun SHEN ; Dan HU ; Chunxia CHEN ; Haiwei CHEN ; Zhe SUN
Shanghai Journal of Preventive Medicine 2025;37(4):296-300
ObjectiveTo explore the clinical characteristics and risk factors for 30-day mortality in hospitalized patients with bloodstream infections (BSI) caused by carbapenem-resistant Klebsiella pneumoniae (CRKP). MethodsData were obtained retrospectively from the electronic medical records of inpatients at a tertiary A-grade hospital in Shanghai from January 2016 to December 2023. The collected variables included age, gender, department, surgical treatment, empirical antibiotic therapy, Pitt Bacteremia score (PBS), Charlson comorbidity index (CCI), INCREMENT-CPE score (ICS), length of hospital stay, the time from CRKP-BSI to discharge and, etc. The follow-up period ended upon discharge, with the follow-up outcomes defined as in-hospital mortality or discharge. The endpoint was defined as death within 30 days (including day 30) caused by CRKP-BSI or infection-related complications. Patients who survived within 30 days after CRKP-BSI were classified into the survival group, while those who died within 30 days were classified into the death group. Independent risk factors for 30-day mortality in patients with CRKP-BSI were analyzed using univariate and multivariate Cox regression analysis. ResultsA total of 71 hospitalized patients with CRKP-BSI, comprising 51 males and 20 females, with an average age of (65.12±18.25) years, were included during the study period. The M (P25, P75) of hospital stay were 37.00 (24.00, 56.00) days, and M (P25, P75) of the duration from CRKP-BSI to discharge or death were 18.00 (7.00, 35.00) days. There were 20 deaths (28.17%) in the death group and 51 survivors (71.83%) in the survival group. The results of multivariate Cox regression analysis showed that the ICS as an independent risk factor for 30-day mortality in CRKP-BSI patients (HR=1.379, 95%CI: 1.137‒1.671, P=0.001). Each 1-point increase in the ICS was associated with a 37.9% increase in the risk of mortality. ConclusionThe ICS is found to be a risk factor for 30-day mortality in patients with CRKP-BSI, which may facilitate the prediction for the risk of 30-day mortality and thereby support clinical decision-making for patients with CRKP-BSI.
9.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
10.Preparation of HA-modified emodin-contained multi-walled carbon nanotubes drug delivery system and its inhi-bitory effect on breast cancer cells
Yuduo LI ; Juan DU ; Yunlong LIU ; Feng GENG ; Xiaobing CHEN
China Pharmacy 2025;36(12):1463-1469
OBJECTIVE To prepare hyaluronic acid (HA)-modified emodin (EMD)-contained multi-walled carbon nanotubes (MWCNTs) drug delivery system (HA-MWCNTs-EMD) and explore its in vitro inhibitory effect on breast cancer cells. METHODS EMD was loaded onto MWCNTs to prepare a drug delivery system MWCNTs-EMD; subsequently, the system was further modified with HA to obtain the drug delivery system HA-MWCNTs-EMD. The two drug delivery systems mentioned above were characterized. With free EMD as the reference, the drug release in vitro of the above two drug delivery systems was investigated; the uptake of EMD by two breast cancer cells (MCF-7, MDA-MB-231 cells) was detected. The impacts of the above two drug delivery systems on the expression of surface glycoprotein differentiation group 44 (CD44), activity, apoptosis and lactate dehydrogenase (LDH) release of two breast cancer cells were detected. RESULTS The encapsulation efficiencies of MWCNTs-EMD and HA-MWCNTs-EMD were both (63.52±2.74)%, with drug loading rates of (25.01±1.83)% and (12.13± 1.96)%, particle sizes of (865.95±2.16) and (351.86±1.68) nm, polydispersity indexes of 0.54±0.02 and 0.23±0.01, and Zeta potentials of (23.87±0.14) and (-42.79±0.39) mV, respectively. The 2, 4, 6, 8, 10, 12 and 24-hour cumulative release rates of EMD in MWCNTs-EMD and HA-MWCNTs-EMD were significantly lower than those in free EMD, while the cumulative release rate of HA-MWCNTs-EMD was significantly higher than that of MWCNTs-EMD (P<0.05); the EMD uptakes of MWCNTs-EMD and HA-MWCNTs-EMD by the two types of breast cancer cells were significantly higher than their uptake of free EMD (P<0.05). Compared with the free EMD group, the MWCNTs-EMD and MWCNTs-EMD groups showed significantly higher apoptosis rate and LDH release, significantly lower surface CD44 expression (except for the MWCNTs-EMD group) and cell viability in both cell types, and the effect of HA-MWCNTs-EMD was more pronounced (P<0.05). CONCLUSIONS A novel drug delivery system HA-MWCNTs- EMD loaded with EMD is developed successfully; the drug delivery system has a certain slow-release effect, which can significantly reduce the activity of breast cancer cells, promote their apoptosis and increase the release of LDH, and the above anti- breast cancer effect is significantly stronger than that of free EMD and MWCNTs-EMD.


Result Analysis
Print
Save
E-mail