1.Ligninolytic enzymes profiling in association with the aggressiveness of Ganoderma boninense isolates
Gunashila Periasamy ; Wong Mui Yun ; Ganesan Vadamalai ; Ho Chai Ling ; Yuvarani Raja Naidu ; Shamala Sundram
Malaysian Journal of Microbiology 2023;19(1):11-21
Aims:
This study was designed to examine the enzyme activity of selected virulent isolates of Ganoderma boninense against oil palm. In a separate in vitro assessment, the effect of macronutrients on the mycelial growth of four selected Ganoderma spp. was also tested.
Methodology and results:
The study involved a comparison of ligninolytic enzymes; lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac) profiling of eight isolates of G. boninense, categorized into three levels of aggressiveness, with two control isolates (G. boninense PER71 and G. tornatum NPG1) using solid-state fermentation (SSF). The Principal Component Analysis (PCA) revealed that the isolates had a significant production of ligninolytic enzymes on day 80. The most aggressive isolate, ET61 had the highest Lac production. As for the macronutrient test, mycelial growth for all the Ganoderma spp. was highly affected by potassium (K).
Conclusion, significance and impact of study
The findings of this study elucidated the characteristics of G. boninense in relation to enzyme production for the degradation of oil palm lignin and the identification of essential nutrients involved in the survival and growth of Ganoderma spp. The study provides vital information on the pathogenic characteristics of G. boninense isolates involved in biomass degradation along with the role of nutrient on the growth of Ganoderma spp. that may influence basal stem rot (BSR) management in the field.
Enzymes
;
Ganoderma
;
Palm Oil
2.Molecular mechanism of Ganoderma against gastric cancer based on network pharmacology and experimental test.
Jia-Yi ZHONG ; Hai-Bing CHEN ; Da-Zeng YE ; Zheng-Jun DENG ; Jia-Jia SHAO ; Jia-Wei HAN ; Jun-Hui YUAN ; Nian-Ying DENG
China Journal of Chinese Materia Medica 2022;47(1):203-223
This study aims to explore the molecular mechanism of Ganoderma against gastric cancer based on network pharmacology, molecular docking, and cell experiment. The active components and targets of Ganoderma were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), and gastric cancer-related targets from GeneCards and Online Mendelian Inheritance in Man(OMIM). The protein-protein interaction(PPI) network of the common targets was constructed with STRING, followed by Gene Ontology(GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis of the common genes based on Bioconductor and R language. The medicinal-disease-component-target network and medicinal-disease-component-target-pathway network were established by Cytoscape. Molecular docking was performed between β-sitosterol(the key component in Ganoderma) and the top 15 targets in the PPI network. Cell experiment was performed to verify the findings. A total of 14 active components and 28 targets of Ganoderma were retrieved, and the medicinal and the disease shared 25 targets, including caspase-3(CASP3), caspase-8(CASP8), caspase-9(CASP9), and B-cell lymphoma-2(BCL2). The common targets involved 72 signaling pathways and apoptosis and p53 signaling pathway may play a crucial role in the effect of Ganoderma against gastric cancer. β-sitosterol had strong binding activity to the top 15 targets in the PPI network. The in vitro cell experiment demonstrated that β-sitosterol inhibited gastric cancer AGS cell proliferation by inducing cell apoptosis and cell cycle arrest in the S phase, which might be related to the regulation of the p53 pathway. This study shows the multi-component, multi-target, and multi-pathway characteristics of Ganoderma against gastric cancer, which lays a scientific basis for further research on the molecular mechanism.
Ganoderma
;
Humans
;
Medicine, Chinese Traditional
;
Molecular Docking Simulation
;
Network Pharmacology
;
Stomach Neoplasms/genetics*
3.A potential mating-type biomarker to detect pathogenic Ganoderma species
Doris Lau ; Lee Weng Wah ; Chong Mei Ling ; Tee Sue Sean ; Jonathan Guyang Ling ; Anis Farhan Fatimi Ab Wahab ; Farah Diba Abu Bakar
Malaysian Journal of Microbiology 2022;18(3):331-337
Aims:
The basal stem rot disease in oil palm is caused by the pathogenic Ganoderma boninense, which is infectious after mating and forming dikaryotic hyphae. This study was aimed to generate a mating-type biomarker for the detection of pathogenic Ganoderma species.
Methodology and results:
Mating-type region of Ganoderma was amplified using polymerase chain reaction (PCR) and primers flanking the mating-type region of other basidiomycetes. Amplified fragments were sequenced and were identified as the Ganoderma pheromone receptor gene of matB locus called the gprb2 gene. Using this biomarker, the pheromone receptor gene was detected in a total of 107 pathogenic Ganoderma spp. while the gene was not detected in the non-pathogenic Ganoderma lucidum. Phylogenetic tree analyses of the gene fragment encoding the partial amino acid sequence of gprb2 showed clades of close evolutionary relationship among the 107 pathogenic Ganoderma spp. Phylogenetic analyses using deduced amino acid sequences of the Ganoderma pheromone receptor b2 gene, gprb2 with homologous pheromone receptors of other basidiomycetous fungi revealed high conservation of this pheromone receptor within their respective taxonomy.
Conclusion, significance and impact of study
A potential mating-type biomarker was successfully identified that could detect pathogenic Ganoderma spp. The research findings will be helpful in oil palm screening to detect pathogenic Ganoderma spp. and gain further insight into the role of the mating-type loci of Ganoderma towards its pathogenesis in causing the basal stem rot disease of oil palm.
Genes, Mating Type, Fungal
;
Ganoderma
4.Study on chemical constituents from fruiting bodies of Ganoderma calidophilum.
Ting-Ting ZHANG ; Jiao-Cen GUO ; Qing-Yun MA ; Fan-Dong KONG ; Li-Man ZHOU ; Qing-Yi XIE ; Hao-Fu DAI ; Zhi-Fang YU ; You-Xing ZHAO
China Journal of Chinese Materia Medica 2021;46(7):1783-1789
Chemical constituents were isolated and purified from fruiting bodies of Ganoderma calidophilum by various column chromatographic techniques, and their chemical structures were identified through combined analysis of physicochemical properties and spectral data. As a result, 11 compounds were isolated and identified as(24E)-lanosta-8,24-dien-3,11-dione-26-al(1), ganoderone A(2), 3-oxo-15α-acetoxy-lanosta-7,9(11), 24-trien-26-oleic acid(3),(23E)-27-nor-lanosta-8,23-diene-3,7,25-trione(4), ganodecanone B(5), ganoderic aldehyde A(6), 11β-hydroxy-lucidadiol(7), 3,4-dihydroxyacetophenone(8), methyl gentiate(9), ganoleucin C(10), ganotheaecolumol H(11). Among them, compound 1 is a new triterpenoid. The cytotoxic activities of all of the compounds against tumor cell lines were evaluated. The results showed that compounds 1, 3, 4 and 6 showed cytotoxic activity against BEL-7402, with IC_(50) values of 26.55, 11.35, 23.23, 18.66 μmol·L~(-1); compounds 1 and 3-6 showed cytotoxic activity against K562, with IC_(50) values of 5.79, 22.16, 12.16, 35.32, and 5.59 μmol·L~(-1), and compound 4 showed cytotoxic activity against A549, with IC_(50) value of 42.50 μmol·L~(-1).
Cell Line, Tumor
;
Fruiting Bodies, Fungal
;
Ganoderma
;
Molecular Structure
;
Triterpenes/pharmacology*
5.Identification of phosphatidic acid interacting proteins in Ganoderma lingzhi.
Yongnan LIU ; Yuanyuan YIN ; Hongwei HAO ; Rui WANG ; Zhe HE ; Renyuan TIAN ; Gaoqiang LIU
Chinese Journal of Biotechnology 2021;37(9):3293-3299
Ganoderma lingzhi is widely recognized as a medicinal basidiomycetes. Triterpene acids (TAs) are the key bioactive medicinal components of G. lingzhi. Our previous studies have shown that phospholipid acid (PA) produced by phospholipase D (PLD) plays a regulatory role in TA synthesis. In order to further elucidate the molecular mechanism how PA regulates TA synthesis in G. lingzhi, PA beads enrichment combined with LC-MS/MS technology was used to identify PA interacting proteins in G. lingzhi. A total of 19 PA interacting proteins were identified, including cytochrome P450 monooxygenase (GL22084), specific protein kinase MAPK (GL23765), catalase and cell surface hydrophobicity-associated protein. GST tagged GL22084 and GL23765 proteins were obtained through gene cloning, heterologous expression, and purification. The interactions between GL22084/GL23765 and PA were verified by GST pull down assay. The identification of PA interacting proteins provides a basis for further understanding the molecular mechanism how PLD-mediated PA signaling molecules regulates the TA synthesis in G. lingzhi. Moreover, the PA interacting proteins identified in this study can also provide clues for the research of PLD/PA signaling pathway in other species.
Chromatography, Liquid
;
Ganoderma
;
Phosphatidic Acids
;
Tandem Mass Spectrometry
6.Evaluation on the effectiveness of combination of biocontrol agents in managing Ganoderma boninense of oil palm
Feodora Grace Japanis ; Yow San Chan ; Khim Phin Chong
Malaysian Journal of Microbiology 2021;17(1):1-10
Aims:
The development of an effective biocontrol formulation for inhibition of Ganoderma boninense, a well-known
destructive pathogen in oil palm plantation is important to prolong the palm’s lifespan and reduce the losses due to this
disease. In this paper, we present some new bioformulations with combination of different types of biocontrol agents in
managing basal stem rot (BSR) disease.
Methodology:
The effectiveness of the treatments designed as T1 (Trichoderma harzianum + Lecanicillium spp. +
Streptomyces sundarbansensis + Pseudomonas aeruginosa), T2 (Penicillium simplicissimum + Lecanicillium sp. + S.
sundarbansensis + P. aeruginosa), T3 (P. simplicissimum + P. aeruginosa) and T4 (LEStani®) was evaluated through
treatment on the oil palm seedlings artificial infected by G. boninense and the results were expressed in disease severity
index (DSI), bole severity index (BSI) and ergosterol content.
Conclusion, significance and impact of study
All tested treatments (T1-T4) managed to control the severity of the
Ganoderma infection from continuously increasing when the treatments were applied either one month before or after
artificial inoculation. The disease severity of infected seedlings without treatments had increased for almost 2-fold at the
end of the trial. Moreover, T1 had the greatest inhibition of G. boninense with the lowest ergosterol content (a
bioindicator of Ganoderma colonization) detected (676.67 g/mL), which is about 1.9-fold lower than control (1273.33
ug/mL) without treatments and a BSI score of 1. Based on the effectiveness among the four tested biocontrol
formulations, T1 is the most promising formulation to be further evaluated in the field for control of BSR disease.
However, more research is needed in the future to estimate the effective amount for application in open environment.
Palm Oil
;
Biological Control Agents
;
Ganoderma
7.Thermosensitive gel of polysaccharide from Ganoderma applanatum combined with paclitaxel for mice with 4T1 breast cancer.
Lan TANG ; Zhuan-Feng ZHU ; Li-Peng CAO ; Miao SHEN ; Yan GAO ; Chao-Jie TU ; Zhen-Hai ZHANG ; Wei-Guang SHAN
China Journal of Chinese Materia Medica 2020;45(11):2533-2539
Polysaccharide from Ganoderma applanatum has the activities of anti-tumor and enhancing immune function. There were no reports on antitumor effect of its intratumoral injection. In this study, the polysaccharide was extracted from G. applanatum by water extraction and alcohol precipitation, and purified by ceramic membrane after removing protein by Sevage method. The total polysaccharide content from G. applanatum(PGA)was about 63%. The combination of PGA and paclitaxel showed synergistic effect on cytotoxicity of 4 T1 cells at lower concentrations in vitro. In addition, the growth curve of 4 T1 cells showed that PGA could retard the growth of 4 T1 cells gradually. The PGA thermosensitive gel(PGA-TG)was prepared by using poloxamer 188 and 407. The gel temperature was 36 ℃, and the PGA-TG could effectively slow down the release rate of PGA in vitro. 4 T1 breast cancer-bearing mice were used as a model to evaluate the therapeutic effect of intratumoral injection of PGA combined with tail vein injection of nanoparticle albumin-bound paclitaxel(nab-PTX). In high and low dose PGA groups, each mice was given with 2.25, 1.125 mg PGA respectively, twice in total, and the dosage of paclitaxel was 15 mg·kg~(-1), once every 3 days, for a total of five times. The tumor inhibition rate was 29.65% in the high dose PGA-TG group, 58.58% in the nab-PTX group, 63.37% in low dose PGA-TG combined with nab-PTX group, and 68.10% in high dose PGA-TG combined with nab-PTX group respectively. The inhibitory effect in high dose PGA-TG group combined with nab-PTX on tumors was significantly higher than that in nab-PTX group(P<0.05). The results showed that paclitaxel therapy combined with intratumoral injection of PGA-TG could improve the therapeutic effect for 4 T1 mice and reduce the side effects of chemotherapy.
Animals
;
Breast Neoplasms
;
Cell Line, Tumor
;
Ganoderma
;
Mice
;
Neoplasms
;
Paclitaxel
;
Poloxamer
;
Polysaccharides
8.Anti-Melanogenic Effect from Submerged Mycelial Cultures of Ganoderma weberianum
Ying Jang LAI ; Kai Di HSU ; Tzu Jung HUANG ; Chang Wei HSIEH ; Yu Hin CHAN ; Kuan Chen CHENG
Mycobiology 2019;47(1):112-119
Compounds from Lingzhi has been demonstrated the ability for inhibiting tyrosinase (a key enzyme in melanogenesis) activity. In this study, we investigated the anti-melanogenic activity from the submerged mycelial culture of Ganoderma weberianum and elucidated the skin lightening mechanism by B16-F10 murine melanoma cells. From the cellular context, several fractionated mycelium samples exhibited anti-melanogenic activity by reducing more than 40% extracellular melanin content of B16-F10 melanoma cells. In particular, the fractionated chloroform extract (CF-F3) inhibited both secreted and intracellular melanin with the lowest dosage (25 ppm). Further analysis demonstrated that CF-F3 inhibited cellular tyrosinase activity without altering its protein expression. Taken together, our study has demonstrated that the chemical extracts from submerged mycelial culture of G. weberianum have the potential to serve as an alternative anti-melanogenic agent.
Chloroform
;
Ganoderma
;
Melanins
;
Melanoma
;
Monophenol Monooxygenase
;
Mycelium
;
Reishi
;
Skin
9.Study on chemical constituents from fruiting bodies of Ganoderma australe.
Ya-Zhe GE ; Qing-Yun MA ; Fan-Dong KONG ; Qing-Yi XIE ; Chang-Liang AN ; Zhi-Fang YU ; You-Xing ZHAO
China Journal of Chinese Materia Medica 2019;44(3):489-494
Chemical constituents were isolated from the fruiting bodies of Ganoderma australe by various column chromatographic techniques and HPLC method, and their chemical structures were identified through the combined analysis of physicochemical properties and spectral data. Meanwhile, their α-glucosidase inhibitory activity and anti-oxidative ability were evaluated. Seven compounds were isolated from G. australe and were identified as 6-methoxyl-cyclo-(Phe-Ile)(1), applanoxidic acid A methyl ester(2), ergosta-7,22 E-dien-3β-ol(3), cinnamic acid(4), 5α,8α-epidioxy-(20S,22E,24R)-ergosta-6,22-diene-3β-ol(5), 1-(3, 4-dihydroxyphenyl) ethanone(6), salicylic acid(7) and benzoic acid(8). Among the compounds, compound 1 was a new cyclic dipeptide. Compound 2 was a new lanosta natural product, and compounds 4, 6, 7 and 8 were obtained from G. australe for the first time. Moreover, compounds 4 and 8 exhibited α-glucosidase inhibitory activity with inhibition rates of 36.8% and 34.7%, and compounds 4, 7 and 8 had a certain activity in DPPH free radical scavenging activity with IC_(50) values of 0.168, 0.458 and 0.170 g·L~(-1), respectively. The DPPH radical scavenging rate of compound 1 was 41.1%.
Free Radical Scavengers
;
isolation & purification
;
Fruiting Bodies, Fungal
;
chemistry
;
Ganoderma
;
chemistry
;
Glycoside Hydrolase Inhibitors
;
isolation & purification
;
Molecular Structure
10.Comparative study on appearance characters and internal structure of cultivated and wild Ganoderma lucidum in Huoshan.
Liang-Ping ZHA ; Ya-Jun WANG ; Yuan YUAN ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2019;44(22):4806-4812
Through the comparative study on the appearance characters and internal structure of cultivated and wild Ganoderma lucidum in Huoshan,this paper provides a reference for the further study of G. lucidum. In this study,the similarities and differences between cultivated G. lucidum " Huozhi No. 1" and wild G. lucidum in Huoshan were compared by means of character observation,optical microscopy and scanning electron microscope( SEM). The results showed that the pileus color of " Huozhi No. 1" was yellowish brown and thicker,while that of wild G. lucidum was mainly reddish brown,the context was thinner,and there were gravel and rotten wood at the bottom of the stipe. A clear skeletal hyphae and binding hyphae were observed in cultivated and wild G. lucidum,but there was no significant difference. The shell layer,context layer,mediostratum layer and spores of cultivated and wild G. lucidum were observed by SEM,and the results showed that there was no significant difference. It was found that the mediostratum of " Huozhi No. 1" was thin and irregular,while the mediostratum of wild G. lucidum was neat and compact. There were two types of spores in wild G. lucidum,one of which retained the outer wall of spore type Ⅰ,with tiny pores on the surface. The other is type Ⅱ spores with many spinous processes on the surface,which may be formed by type Ⅰ spores falling off the outwall. In this study,the appearance characters and internal structure of cultivated and wild G. lucidum in Huoshan were systematically observed and compared,which provided theoretical basis and reference for the identification and quality evaluation of cultivated and wild G. lucidum.
Ganoderma
;
Hyphae
;
Reishi


Result Analysis
Print
Save
E-mail