1.Correlation between dietary protein intake and type 2 diabetes in adult residents of Chongqing
Jingrong CHEN ; Shuquan LUO ; Yingxu LAI ; Ping FENG ; Dong WANG
Journal of Public Health and Preventive Medicine 2025;36(1):79-82
Objective To investigate the impact of dietary protein intake on the prevalence of type 2 diabetes in adult residents, and to provide a reference for formulating diabetes prevention and control measures. Methods The research was based on cross-sectional survey data from the Nutrition and Health Follow-up Study of Chinese Residents in Chongqing (2021). Energy and nutrient intake was calculated in combination with the Chinese food composition table. Multivariate logistic regression was used to analyze the association between dietary protein and diabetes, and then restricted cubic spline regression (RCS) was used to analyze the dose-response relationship between dietary protein intake and the development of diabetes. Results Among the 1 415 adult residents, dietary intake of total protein, animal protein, and plant protein was 69.69g/d, 26.26g/d, and 43.43g/d, respectively. The ratio of protein to energy supply was 14.31%, and the prevalence of diabetes was 18.02%. Comparing with the residents in the first percentile of total dietary protein intake, the multivariable-adjusted odds ratios of those in the second and third percentile were 1.754 and 2.453 respectively. Comparing the residents in the third percentile with those in the first percentile, the multivariable-adjusted odds ratios of diabetes were 1.592 for protein energy supply ratio, and 1.558 for animal protein intake. Conclusion High protein intake, high protein energy supply ratio and high animal protein intake may increase the risk of diabetes, and different types of protein may have different effects on diabetes.
2.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
3.Bioinformatics Analysis and Experimental Validation of the Mechanism of Leigongteng (Tripterygium wilfordii Hook. f.) in Treating Rheumatoid Arthritis
Yuzheng YANG ; Xiaoling YAO ; Feng LUO ; Wukai MA
Journal of Traditional Chinese Medicine 2025;66(7):724-733
ObjectiveTo explore the potential mechanisms of Leigongteng (Tripterygium wilfordii Hook. f.) in treating rheumatoid arthritis (RA) using bioinformatics analysis and experimental validation. MethodsBioinformatics approaches, including the Gene Expression Omnibus (GEO), the traditional Chinese medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) network analysis, molecular docking, receiver operating characteristic (ROC) analysis, and immune infiltration analysis, were used to predict the key active components of Leigongteng and its target genes for RA treatment. Experimental validation was conducted using human rheumatoid arthritis fibroblast-like synoviocytes (HFLS-RA) in vitro, with methotrexate as the positive control. A scratch assay was performed to assess cell migration after 24 hours of culture. Western blotting was used to detect protein expression levels, qPCR was used to measure target gene mRNA levels, and ELISA was conducted to evaluate inflammatory cytokine levels, including interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α). ResultsA total of 117 target genes of Leigongteng were identified and intersected with RA-related genes, yielding 55 key genes. Further screening identified three core genes: PTGS2, CXCR4, and TIMP1. Based on the correspondence between potential drug targets and key components, triptolide and nobiletin were identified as the primary active compounds. Molecular docking results showed that both triptolide and nobiletin had binding energies lower than -5 kcal/mol with their respective target proteins, indicating strong interactions. In vitro experiments demonstrated that, compared with the blank control group, the triptolide, nobiletin, and positive control groups exhibited reduced cell migration rates after 24 hours of culture (P<0.01). The expression levels of PTGS2 and CXCR4 (both mRNA and protein) were significantly downregulated, while TIMP1 expression was upregulated. Levels of IL-1β, IL-6, and TNF-α decreased, whereas IL-10 levels increased (P<0.01). Compared with the positive control group, the triptolide and nobiletin groups showed increased cell migration rates, upregulated PTGS2 and CXCR4 expression (mRNA and protein), downregulated TIMP1 expression (mRNA and protein), increased IL-1β, IL-6, and TNF-α levels, and decreased IL-10 levels (P<0.05 or P<0.01). ConclusionThe key active components of Leigongteng, triptolide and nobiletin, may alleviate RA by inhibiting PTGS2 and CXCR4 while promoting TIMP1 expression, thereby suppressing inflammatory responses.
4.Mendelian randomization study on the association between telomere length and 10 common musculoskeletal diseases
Weidong LUO ; Bin PU ; Peng GU ; Feng HUANG ; Xiaohui ZHENG ; Fuhong CHEN
Chinese Journal of Tissue Engineering Research 2025;29(3):654-660
BACKGROUND:Multiple observational studies have suggested a potential association between telomere length and musculoskeletal diseases.However,the underlying mechanisms remain unclear. OBJECTIVE:To investigate the genetic causal relationship between telomere length and musculoskeletal diseases using two-sample Mendelian randomization analysis. METHODS:Genome-wide association study summary data of telomere length were obtained from the UK Biobank.Genome-wide association study summary data of 10 common musculoskeletal diseases(osteonecrosis,osteomyelitis,osteoporosis,rheumatoid arthritis,low back pain,spinal stenosis,gout,scapulohumeral periarthritis,ankylosing spondylitis and deep venous thrombosis of lower limbs)were obtained from the FinnGen consortium.Inverse variance weighting,Mendelian randomization-Egger and weighted median methods were used to evaluate the causal relationship between telomere length and 10 musculoskeletal diseases.Inverse variance weighting was the primary Mendelian randomization analysis method,and sensitivity analysis was performed to explore the robustness of the results. RESULTS AND CONCLUSION:(1)Inverse variance-weighted results indicated a negative causal relationship between genetically predicted telomere length and rheumatoid arthritis(odds ratio=0.78,95%confidence interval:0.64-0.95,P=0.015)and osteonecrosis(odds ratio=0.56,95%confidence interval:0.36-0.90,P=0.016).No causal relationship was found between telomere length and the other eight musculoskeletal diseases(all P>0.05).(2)Sensitivity analysis affirmed the robustness of these causal relationships,and Mendelian randomization-Egger intercept analysis found no evidence of potential horizontal pleiotropy(all P>0.05).(3)This Mendelian randomized study supports that telomere length has protective effects against rheumatoid arthritis and osteonecrosis.However,more basic and clinical research will be needed to support our findings in the future.
5.Finite element analysis of bioabsorbable plates versus miniature titanium plates in mandibular fracture fixation in different bone qualities
Zonghao ZHOU ; Siyang LUO ; Jiawen CHEN ; Guangneng CHEN ; Hongchao FENG
Chinese Journal of Tissue Engineering Research 2025;29(4):818-826
BACKGROUND:The healing of mandibular fractures after rigid internal fixation is influenced by many factors,including the material of the bone plate,fracture site,and bone density of the patient.However,there are relatively few studies on the relationship between the stability of mandibular fracture fixation in different bone qualities and they lack a scientific basis. OBJECTIVE:To analyze the stability of fixation of mandibular fractures with different bone qualities with bioabsorbable plates and miniature titanium plates by finite element analysis. METHODS:Three-dimensional finite element models of class Ⅰ-Ⅳ mandibular fractures were developed according to the bone quality classification method proposed by ZARB and LEKHOLM.The fractures at the median mandibular symphysis,mandibular body,and mandibular angle were simulated under different bone qualities.Bioabsorbable bone grafting plates(or miniature titanium plates)were placed at each fracture site for fixation and to simulate the state of healthy side occlusion.Finite element analysis on the model was used to analyze the relative displacement of the fracture segments and the stress distribution of fixators. RESULTS AND CONCLUSION:(1)The maximum stress value during fixation with titanium plates increased gradually with the increase of bone class,in which the maximum stress value of titanium plates was the highest in the mandibular body class Ⅳ bone group,which was 382.74 MPa and 96.11 MPa in the miniature titanium plate and bioabsorbable plate groups.The results for mandibles of the same bone type showed that the maximum stress value of titanium plates was much higher than that of bioabsorbable plates.(2)For fractures of the median middle of the mandible in types Ⅲ and Ⅳ,the displacement of the fracture breaks at the fixation site was large and exceeded the limiting value of bone healing(>150 μm),regardless of whether the fixation was performed with a miniature titanium plate or a bioabsorbable plate.For type Ⅳ mandibular fractures,the fracture end displacement in the bioabsorbable plate group exceeded the healing limit value,and the fracture end displacement in the miniature titanium plate group was close to the healing limit value.Under the same bone quality and fracture site,the fracture displacement of the miniature titanium plate group was smaller than that of the bioabsorbable plate group.(3)The results showed that the strength and stiffness of the two internal fixations were sufficient to support bone healing of fractures at three sites of the types Ⅰ-Ⅳ mandible,and the fixation stability of the bioabsorbable plate was almost the same as that of the miniature titanium plate,which could provide early healing conditions for fractures.Mandibular bone type should be taken into consideration in the treatment of mandibular fracture.The higher the mandibular bone grade,the worse the stability of fracture fixation,and the more likely the complications such as poor bone healing will occur after surgery.
6.Studies on pharmacological effects and chemical components of different extracts from Bawei Chenxiang Pills.
Jia-Tong WANG ; Lu-Lu KANG ; Feng ZHOU ; Luo-Bu GESANG ; Ya-Na LIANG ; Guo-Dong YANG ; Xiao-Li GAO ; Hui-Chao WU ; Xing-Yun CHAI
China Journal of Chinese Materia Medica 2025;50(11):3035-3042
The medicinal materials of Bawei Chenxiang Pills(BCPs) were extracted via three methods: reflux extraction by water, reflux extraction by 70% ethanol, and extraction by pure water following reflux extraction by 70% ethanol, yielding three extracts of ST, CT, and CST. The efficacy of ST(760 mg·kg~(-1)), CT(620 mg·kg~(-1)), and CST(1 040 mg·kg~(-1)) were evaluated by acute myocardial ischemia(AMI) and p-chlorophenylalanine(PCPA)-induced insomnia in mice, respectively. Western blot was further utilized to investigate their hypnosis mechanisms. The main chemical components of different extracts were identified by the UPLC-Q-Exactive-MS technique. The results showed that CT and CST significantly increased the ejection fraction(EF) and fractional shortening(FS) of myocardial infarction mice, reduced left ventricular internal dimension at end-diastole(LVIDd) and left ventricular internal dimension at end-systole(LVIDs). In contrast, ST did not exhibit significant effects on these parameters. In the insomnia model, CT significantly reduced sleep latency and prolonged sleep duration, whereas ST only prolonged sleep duration without shortening sleep latency. CST showed no significant effects on either sleep latency or sleep duration. Additionally, both CT and ST upregulated glutamic acid decarboxylase 67(GAD67) protein expression in brain tissue. A total of 15 main chemical components were identified from CT, including 2-(2-phenylethyl) chromone and 6-methoxy-2-(2-phenylethyl) chromone. Six chemical components including chebulidic acid were identified from ST. The results suggested that chromones and terpenes were potential anti-myocardial ischemia drugs of BCPs, and tannin and phenolic acids were potential hypnosis drugs. This study enriches the pharmacological and chemical research of BCPs, providing a basis and reference for their secondary development, quality standard improvement, and clinical application.
Animals
;
Drugs, Chinese Herbal/isolation & purification*
;
Mice
;
Male
;
Sleep Initiation and Maintenance Disorders/physiopathology*
;
Humans
;
Myocardial Infarction/drug therapy*
;
Myocardial Ischemia/drug therapy*
7.Mechanism of Tougu Xiaotong Capsules in alleviating glycolytic metabolism disorder of chondrocytes in osteoarthritis by modulating circFOXO3.
Chang-Long FU ; Yan LUO ; Jia-Jia XU ; Yan-Ming LIN ; Qing LIN ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(16):4641-4648
From the perspective of circular RNA forkhead box protein O3(circFOXO3) regulating glycolysis in osteoarthritis(OA) chondrocytes, this study investigated the mechanism by which Tougu Xiaotong Capsules(TGXTC) alleviated OA degeneration. In in vivo experiments, after randomized grouping and relevant interventions, morphological staining was used to observe structural changes in cartilage tissue. The mRNA level of circFOXO3 in cartilage tissue was detected by real-time quantitative PCR(RT-qPCR). Western blot analysis was used to detect changes in the expression of glucose transporter 1(GLUT1), hexokinase 2(HK2), pyruvate kinase M2(PKM2), lactate dehydrogenase A(LDHA), and matrix metalloproteinase 13(MMP13). In in vitro experiments, fluorescence in situ hybridization(FISH) was used to detect circFOXO3 expression in chondrocytes from each group. A lentiviral vector was used to construct circFOXO3-silenced(sh-circFOXO3) chondrocytes. RT-qPCR was used to analyze the changes in circFOXO3 levels after silencing, and Western blot was used to assess the regulatory effects of TGXTC on GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in interleukin-1β(IL-1β)-induced chondrocytes under sh-circFOXO3 conditions. Masson staining and alcian blue staining results showed that the cartilage layer structure in the TGXTC and positive drug groups was improved compared with that in the model group. The mRNA level of circFOXO3 was significantly upregulated in both the TGXTC and positive drug groups, while the expression of the above-mentioned proteins was significantly reduced. FISH results showed that TGXTC upregulated the fluorescence intensity of circFOXO3 in IL-1β-induced chondrocytes. In the circFOXO3 silencing experiment, compared with the IL-1β group, circFOXO3 levels in the IL-1β + sh-circFOXO3 group were significantly decreased. Compared with the IL-1β + TGXTC group, circFOXO3 levels were significantly reduced in the IL-1β + sh-circFOXO3 + TGXTC group. Western blot results indicated that the elevated levels of GLUT1, HK2, PKM2, LDHA, and MMP13 proteins in chondrocytes of the IL-1β group were significantly inhibited by TGXTC intervention. However, this regulatory effect was attenuated after circFOXO3 silencing. In conclusion, TGXTC alleviate glycolytic metabolism disorder in OA chondrocytes and delay OA degeneration by regulating circFOXO3.
Chondrocytes/metabolism*
;
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
RNA, Circular/metabolism*
;
Osteoarthritis/genetics*
;
Glycolysis/drug effects*
;
Humans
;
Forkhead Box Protein O3/metabolism*
;
Male
;
Capsules
;
Matrix Metalloproteinase 13/genetics*
8.Serological and molecular biological analysis of a rare Dc- variant individual
Xue TIAN ; Hua XU ; Sha YANG ; Suili LUO ; Qinqin ZUO ; Liangzi ZHANG ; Xiaoyue CHU ; Jin WANG ; Dazhou WU ; Na FENG
Chinese Journal of Blood Transfusion 2025;38(8):1101-1106
Objective: To reveal the molecular biological mechanism of a rare Dc-variant individual using PacBio third-generation sequencing technology. Methods: ABO and Rh blood type identification, DAT, unexpected antibody screening and D antigen enhancement test were conducted by serological testing. The absorption-elution test was used to detect the e antigen. RHCE gene typing was performed by PCR-SSP, and the 1-10 exons of RHCE were sequenced by Sanger sequencing. The full-length sequences of RHCE, RHD and RHAG were detected by PacBio third-generation sequencing technology. Results: Serological findings: Blood type O, Dc-phenotype, DAT negative, unexpected antibody screening negative; enhanced D antigen expression; no detection of e antigen in the absorption-elution test. PCR-SSP genotyping indicated the presence of only the RHCE
c allele. Sanger sequencing results: Exons 5-9 of RHCE were deleted, exon 1 had a heterozygous mutation at c. 48G/C, and exon 2 had five heterozygous mutations at c. 150C/T, c. 178C/A, c. 201A/G, c. 203A/G and c. 307C/T. Third-generation sequencing results: RHCE genotype was RHCE
02N. 08/RHCE-D(5-9)-CE; RHD genotype was RHD
01/RHD
01; RHAG genotype was RHAG
01/RHAG
01 (c. 808G>A and c. 861G>A). Conclusion: This Dc-individual carries the allele RHCE
02N. 08 and the novel allele RHCE-D(5-9)-CE. The findings of this study provide data support and a theoretical basis for elucidating the molecular mechanisms underlying RhCE deficiency phenotypes.
9.mRNA display-enabled discovery of proximity-triggered covalent peptide-drug conjugates.
Ruixuan WANG ; Siqi RAN ; Jiabei GUO ; Da HU ; Xiang FENG ; Jixia ZHOU ; Zhanzhi ZHANG ; Futian LIANG ; Jiamin SHANG ; Lingxin BU ; Kaiyi WANG ; Junyi MAO ; Huixin LUO ; Rui WANG
Acta Pharmaceutica Sinica B 2025;15(10):5474-5485
Peptide-drug conjugates (PDCs) have emerged as a promising modality in precision oncology, enabling targeted delivery of cytotoxic payloads while minimizing off-target toxicity. The integration of covalent warheads, such as those based on sulfur(VI) fluoride exchange (SuFEx) chemistry, enhances drug-target residence time and tumor accumulation. However, existing screening methods for covalent peptide (CP) libraries require post-translational warhead conjugation, limiting throughput. Here, we present an integrated mRNA display platform that incorporates covalent warheads during ribosomal synthesis, enabling efficient screening of ultra-diverse covalent macrocyclic peptide libraries (>1013 variants). This approach, using site-specific incorporation of N-chloroacetyl-d-phenylalanine and fluorosulfate-l-tyrosine, accelerated the discovery of irreversibly binding (K i = 3.58 μmol/L) Nectin-4-targeting peptide CP-N1-N3 via proximity-triggered SuFEx. The peptide was further conjugated to cytotoxic payloads, yielding the covalent PDC CP-N1-MMAE with potent cytotoxicity (IC50 ≈ 43 nmol/L) against MDA-MB-468 cells. This platform establishes a new paradigm for precision covalent drug discovery.
10.Amentoflavone alleviates acute lung injury in mice by inhibiting cell pyroptosis.
Yalei SUN ; Meng LUO ; Changsheng GUO ; Jing GAO ; Kaiqi SU ; Lidian CHEN ; Xiaodong FENG
Journal of Southern Medical University 2025;45(4):692-701
OBJECTIVES:
To investigate the effect of amentoflavone (AF) for alleviating lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and inhibiting NLRP3/ASC/Caspase-1 axis-mediated pyroptosis.
METHODS:
Female BALB/c mice were randomly divided into control group, LPS group, and AF treatment groups at low, moderate and high doses (n=12). ALI models were established by tracheal LPS instillation, and in AF treatment groups, AF was administered by gavage 30 min before LPS instillation. Six hours after LPS instillation, the mice were euthanized for examining lung tissue histopathological changes, protein levels in BALF, and MPO levels in the lung tissue. In the in vitro experiment, RAW264.7 cells were pretreated with AF, AC (a pyroptosis inhibitor), or their combination for 2 h before stimulation with LPS and ATP. The changes in cell proliferation and viability were detected using CCK-8 assay, and IL-1β, IL-6, IL-18, and TNF-α levels were determined with ELISA. Immunohistochemistry, immunofluorescence assay, and immunoblotting were used to detect the protein levels of NLRP3, ASC, cleaved caspase-1, and GSDMD N in rat lung tissues and the treated cells.
RESULTS:
In mice with LPS exposure, AF treatment significantly improved lung pathologies and edema, reduced protein levels in BALF and pulmonary MPO level, inhibited the high expression of NLRP3/ASC/Aspase-1 axis, reduced the expression of GSDMD N, and lowered the release of IL-1β, IL-6, IL-18, and TNF‑α. In RAW264.7 cells with LPS and ATP stimulation, AF pretreatment effectively reduced cell death, inhibited activation of the NLRP3/ASC/Aspase-1 axis, and reduced GSDMD N expression and the inflammatory factors. The pyroptosis inhibitor showed a similar effect to AF, and their combination produced more pronounced effects in RAW264.7 cells.
CONCLUSIONS
Amentoflavone can alleviate ALI in mice possibly by inhibiting NLRP3/ASC/Caspase-1 axis-mediated cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Acute Lung Injury/pathology*
;
Mice
;
Mice, Inbred BALB C
;
Female
;
Lipopolysaccharides
;
Biflavonoids/pharmacology*
;
RAW 264.7 Cells
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Caspase 1/metabolism*
;
Lung


Result Analysis
Print
Save
E-mail