1.Progress of early warning indicators on infectious diseases
Meihua FU ; Fangfang TAO ; Jian CHEN
Shanghai Journal of Preventive Medicine 2024;36(1):90-97
In recent years, with frequent outbreaks of infectious diseases around the world, the global public health is faced with many threats and challenges. An infectious diseases early warning system is an important means for prevention and control of infectious diseases. As an important part of the early warning system, the warning indicators is crucial for understanding the occurrence and development trend of infectious diseases, detecting abnormal situations timely and effectively, and issuing early warning and initiating emergency response. Based on the occurrence and development process of infectious diseases, this paper summarizes the research status of early warning indicators on infectious diseases, in order to provide reference for the development and improvement of the infectious diseases early warning system.
2.Effect and mechanism of cucurbitacin B preventing sepsis-induced acute lung injury in mice
Shoushan CHEN ; Fangfang LI ; Fuyan LIU ; Chao FU ; Zhengzhen TANG
China Pharmacy 2024;35(9):1108-1112
OBJECTIVE To investigate the preventive effect of cucurbitacin B (CB) on sepsis-induced acute lung injury (ALI) and its mechanism. METHODS The mice were divided into control group, model group, dexamethasone group (positive control, 2 mg/kg), CB low-dose and high-dose groups (25, 50 mg/kg). Each group was given relevant medicine intraperitoneally, once a day, for 3 consecutive days. Twenty-four hours after the last administration, those groups were given lipopolysaccharide (10 mg/kg) intraperitoneally to establish sepsis-induced ALI model (finally, 8 mice per group were included in the experiment), except for control group. Twenty-four hours after medication, blood routine indicators (total white blood cell count, neutrophils count, lymphocytes count), lung function indicators (total lung resistance, pulmonary outflow resistance, lung dynamic compliance, peak expiratory flow rate, and maximum ventilation volume), dry wet ratio of lung tissue were measured in each group. The lung tissue level of myeloperoxidase (MPO), and the serum levels of tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, superoxide dismutase (SOD) and malondialdehyde (MDA) were all detected. The pathological changes of lung tissue were observed; immunohistochemistry was used to detect the positive expression of phosphorylation signal transducer and activator of transcription 3 (p-STAT3) in the lung tissue. Western blot assay was used to detect the expressions of proteins related to IL-6/JAK2/ STAT3 signaling pathway in the lung tissue. RESULTS Compared with control group, total pulmonary resistance, pulmonary flow resistance, dry wet ratio of lung tissue, the total white blood cell count, neutrophils count, lymphocytes count of whole blood, the lung tissue level of MPO and serum levels of MDA, IL-6, IL-1β and TNF-α, the p-STAT3 protein optical density value, the protein expressions of IL-6 and IL-6 receptor, and the phosphorylation levels of JAK2 and STAT3 protein were increased significantly in the model group (P<0.01), while lung dynamic compliance, peak expiratory flow rate, maximum ventilation volume and serum level of SOD were decreased significantly (P<0.05 or P<0.01). Pulmonary tissue showed alveolar collapse and infiltration of inflammatory cells. Compared with the model group, the above indexes of mice were reversed significantly in dexamethasone group and CB groups (P<0.05 or P<0.01), the pathological damage of lung tissue was reduced. CONCLUSIONS CB can prevent sepsis-induced ALI by inhibiting the activity of Δ 基金项目遵义市科技计划项目(No.202252) IL-6/JAK2/STAT3 signaling pathway and relieving *第一作者主治医师。研究方向:重症医学。E-mail:fjuanxui@ 163.com inflammatory reactions. # 通信作者 主任医师。研究方向:儿童呼吸系统疾病诊断与治
3.The Correlation between Twist2 Expression and Vascular Infiltration and Prog-nosis in Ovarian Cancer
Jingjing JIANG ; Hongling ZHANG ; Fangfang FU ; Tian WANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):369-373
Objective:To analyze the relationship between Twist2 and the prognosis and vascular infiltration of ovarian cancer patients,and to explore the role and mechanism of Twist2 in vascular infiltration of ovarian cancer.Methods:KM plotter was used to explore the correaltion between Twist2 mRNA expression and overall survival(OS),progression free survival(PFS)and post progression survival(PPS)in ovarian cancer.To analyze the cor-relation between Twist2 and vascular infiltration in ovarian cancer using the cancer genomics database cBioPor-tal.In vitro experiment:Transwell method was employed to determine the role of Twist2 in the invasion and migra-tion abilities of ovarian cancer cell CAOV3[blank group,negative control group(siNC group),siTwist2 group].Uti-lizing Realtime-PCR and Western blot to clarify the changes in Twist2 and VEGFC expression in CAOV3 cells af-ter downregulating Twist2 expression at the RNA and protein levels,respectively.Results:①Online data analysis of KM plotter showed that the ovarian cancer patients with high expression of Twist2 were associated with poor prognosis,with OS(HR 1.24,95%Cl 1.01-1.52),PFS(HR 1.39,95%CI 1.14-1.70)and PPS(HR 1.37,95%CI 1.08-1.74)all showing statistical significance(P<0.05).CBioportal analysis showed that Twist2 mRNA expression was positively correlated with vascular infiltration(r=0.93,P=0.001)and lymphatic infiltration(r=0.89,P=0.009)in ovarian cancer.②Compared with the blank group and siNC group,in vitro experiment Tran-swell assay showed that the invasion and migration ability of ovarian cancer cells in siTwist2 group was significant-ly reduced(P<0.05).In mRNA and protein level,Realtime-PCR and Western blot showed that compared with the blank group and siNC group,the expression of Twist2,as well as VEGFC,were significantly reduced in the siTwist2 group(P<0.05).Conclusions:The expression of Twist2 in ovarian cancer is closely related to tumor prognosis and vascular infiltration.After downregulating Twist2,the number of cells that migrate and invade is sig-nificantly reduced,and the expression of VEGFC is reduced.Twist2 can induce migration and invasion of ovarian cancer cells through VEGFC,which may be one of the indicators for prognosis evaluate and targeted therapy of ovarian cancer in future.
4.The Correlation between Twist2 Expression and Vascular Infiltration and Prog-nosis in Ovarian Cancer
Jingjing JIANG ; Hongling ZHANG ; Fangfang FU ; Tian WANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):369-373
Objective:To analyze the relationship between Twist2 and the prognosis and vascular infiltration of ovarian cancer patients,and to explore the role and mechanism of Twist2 in vascular infiltration of ovarian cancer.Methods:KM plotter was used to explore the correaltion between Twist2 mRNA expression and overall survival(OS),progression free survival(PFS)and post progression survival(PPS)in ovarian cancer.To analyze the cor-relation between Twist2 and vascular infiltration in ovarian cancer using the cancer genomics database cBioPor-tal.In vitro experiment:Transwell method was employed to determine the role of Twist2 in the invasion and migra-tion abilities of ovarian cancer cell CAOV3[blank group,negative control group(siNC group),siTwist2 group].Uti-lizing Realtime-PCR and Western blot to clarify the changes in Twist2 and VEGFC expression in CAOV3 cells af-ter downregulating Twist2 expression at the RNA and protein levels,respectively.Results:①Online data analysis of KM plotter showed that the ovarian cancer patients with high expression of Twist2 were associated with poor prognosis,with OS(HR 1.24,95%Cl 1.01-1.52),PFS(HR 1.39,95%CI 1.14-1.70)and PPS(HR 1.37,95%CI 1.08-1.74)all showing statistical significance(P<0.05).CBioportal analysis showed that Twist2 mRNA expression was positively correlated with vascular infiltration(r=0.93,P=0.001)and lymphatic infiltration(r=0.89,P=0.009)in ovarian cancer.②Compared with the blank group and siNC group,in vitro experiment Tran-swell assay showed that the invasion and migration ability of ovarian cancer cells in siTwist2 group was significant-ly reduced(P<0.05).In mRNA and protein level,Realtime-PCR and Western blot showed that compared with the blank group and siNC group,the expression of Twist2,as well as VEGFC,were significantly reduced in the siTwist2 group(P<0.05).Conclusions:The expression of Twist2 in ovarian cancer is closely related to tumor prognosis and vascular infiltration.After downregulating Twist2,the number of cells that migrate and invade is sig-nificantly reduced,and the expression of VEGFC is reduced.Twist2 can induce migration and invasion of ovarian cancer cells through VEGFC,which may be one of the indicators for prognosis evaluate and targeted therapy of ovarian cancer in future.
5.The Correlation between Twist2 Expression and Vascular Infiltration and Prog-nosis in Ovarian Cancer
Jingjing JIANG ; Hongling ZHANG ; Fangfang FU ; Tian WANG
Journal of Practical Obstetrics and Gynecology 2024;40(5):369-373
Objective:To analyze the relationship between Twist2 and the prognosis and vascular infiltration of ovarian cancer patients,and to explore the role and mechanism of Twist2 in vascular infiltration of ovarian cancer.Methods:KM plotter was used to explore the correaltion between Twist2 mRNA expression and overall survival(OS),progression free survival(PFS)and post progression survival(PPS)in ovarian cancer.To analyze the cor-relation between Twist2 and vascular infiltration in ovarian cancer using the cancer genomics database cBioPor-tal.In vitro experiment:Transwell method was employed to determine the role of Twist2 in the invasion and migra-tion abilities of ovarian cancer cell CAOV3[blank group,negative control group(siNC group),siTwist2 group].Uti-lizing Realtime-PCR and Western blot to clarify the changes in Twist2 and VEGFC expression in CAOV3 cells af-ter downregulating Twist2 expression at the RNA and protein levels,respectively.Results:①Online data analysis of KM plotter showed that the ovarian cancer patients with high expression of Twist2 were associated with poor prognosis,with OS(HR 1.24,95%Cl 1.01-1.52),PFS(HR 1.39,95%CI 1.14-1.70)and PPS(HR 1.37,95%CI 1.08-1.74)all showing statistical significance(P<0.05).CBioportal analysis showed that Twist2 mRNA expression was positively correlated with vascular infiltration(r=0.93,P=0.001)and lymphatic infiltration(r=0.89,P=0.009)in ovarian cancer.②Compared with the blank group and siNC group,in vitro experiment Tran-swell assay showed that the invasion and migration ability of ovarian cancer cells in siTwist2 group was significant-ly reduced(P<0.05).In mRNA and protein level,Realtime-PCR and Western blot showed that compared with the blank group and siNC group,the expression of Twist2,as well as VEGFC,were significantly reduced in the siTwist2 group(P<0.05).Conclusions:The expression of Twist2 in ovarian cancer is closely related to tumor prognosis and vascular infiltration.After downregulating Twist2,the number of cells that migrate and invade is sig-nificantly reduced,and the expression of VEGFC is reduced.Twist2 can induce migration and invasion of ovarian cancer cells through VEGFC,which may be one of the indicators for prognosis evaluate and targeted therapy of ovarian cancer in future.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.

Result Analysis
Print
Save
E-mail