1.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
2.Research progress on occupational health of interventional radiation workers
Junfang MA ; Fang ZHANG ; Wei CUI
Chinese Journal of Radiological Health 2025;34(2):297-302
With the rapid development of interventional radiology technology, the occupational health risk of interventional radiation workers has attracted increasing attention. This paper reviews recent studies on hematological changes, DNA damage and molecular-level changes, cancer, eye lens, and other health impairments among interventional radiation workers. The aim is to provide an overview of the current research progress as well as a scientific basis for the implementation of targeted protective measures to improve the occupational health level of interventional radiology workers.
3.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
4.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
5.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
6.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
7.Temporal therapy utilizing exosomes derived from M2 macrophages demonstrates enhanced efficacy in alleviating neuropathic pain in diabetic rats
Wei WEI ; Jun FANG ; Baozhong YANG ; Chenlong CUI ; Jiacheng WEI ; Yating XUE
The Korean Journal of Pain 2025;38(1):14-28
Background:
Diabetic pain patients have increased pain at night. Exosomes can relieve neuropathic pain. This study aimed to investigate the efficacy of exosome administration at different time points in relieving diabetic neuropathic pain (DNP) in rats.
Methods:
M2 macrophages from bone marrow were induced in mice and exosomes were extracted. A diabetic rat model was induced using streptozotocin, with the mechanical withdrawal threshold (MWT) of the rats beingmeasured at ≤ 80% of the basal value after 14 days, indicating successful construction of the DNP rat model.Exosomes were administered on three consecutive days at ZT0 (zeitgeber time) and ZT12. Parameters including blood glucose levels, body weight, MWT, and thermal withdrawal latency (TWL) were assessed in the rats. The lumbar spinal cord of rats was examined on days 21 and 28 to measure inflammatory factors and observe the expression of M1 and M2 microglia. Furthermore, microglia were exposed to lipopolysaccharide (LPS) and LPS + exosomes in a controlled in vitro setting to assess alterations in microglia phenotype involving the NF-kB p65 andIKBα inflammatory signaling pathways.
Results:
The findings revealed that administration of exosomes during the rat resting period at ZT12 resulted in increased MWT and TWL, as well as a shift in microglia polarization towards the M2 phenotype. In vitro analysis indicated that exosomes influenced microglia polarization and suppressed the phosphorylation of NF-kB p65 andIKBα.
Conclusions
Temporal therapy with exosomes effectively reduces pain in DNP rats by polarizing microglia andaffecting NF-kB p65 and IKBα signaling pathways.
8.Study on the effect of fluoride exposure on dyslipidemia in the elderly
Wenfeng LI ; Fang LI ; Dandan ZHANG ; Yani DUAN ; Yushan CUI ; Yang WANG
Journal of Public Health and Preventive Medicine 2025;36(4):55-59
Objective To explore the association between different levels of fluoride exposure and dyslipidemia in elderly people, and to analyze the influencing factors and their interactions. Methods A total of 1 143 elderly people over 60 years old were randomly selected from historical high water fluorosis areas and control areas in Tianjin. Logistic regression model and classification tree model were used to analyze the influencing factors of dyslipidemia, and to analyze the interaction between high fluoride exposure and relevant influencing factors on dyslipidemia. Results The prevalence of elevated low density lipoprotein cholesterol (LDL-C) was 5.69% (65/1 143). There was a significant difference in the prevalence of high LDL-C in different fluoride-exposed areas (2 = 0.092,P = 0.762). Multivariate logistic analysis showed that high fluoride exposure (OR=2.306,95%CI:1.185-4.491) and abdominal obesity (OR=2.274,95%CI:1.299-3.978) were risk factors for high LDL-C, while type B personality (OR=0.529,95%CI:0.308-0.908) was a protective factor for high LDL-C. The results of classification tree model showed that abdominal obesity contributed the most to the prevalence of high LDL-C in the elderly, followed by high fluoride exposure and hyperglycemia. There was a significant multiplicative interaction between high fluoride exposure and abdominal obesity on dyslipidemia (OR=5.191,95%CI:1.609-16.745,P=0.006). Conclusion High fluoride exposure may increase the risk of high LDL-C, and there is a multiplicative interaction between high fluoride exposure and abdominal obesity on dyslipidemia.
9.Study on the mechanism of Cuscuta chinensis flavonoids promoting decidualization and improving recurrent spontaneous abortion
Fang FANG ; Ying CUI ; Jialü HUANG ; Lili CHEN ; Jia XU ; Yunhui WAN
China Pharmacy 2025;36(19):2379-2386
OBJECTIVE To explore the mechanism by which Cuscuta chinensis flavonoids (CCF) promote decidualization and improve recurrent spontaneous abortion (RSA). METHODS HTR-8/SVneo cells in logarithmic growth phase were randomly divided into blank group, lipopolysaccharide (LPS) group, CCF group, SGK2 inhibitor (GSK650394, abbreviated as “GSK”) group and CCF+GSK group. Each group was treated with the corresponding agents accordingly. HTR-8/SVneo cells with SGK2 knockdown were randomly divided into small interfering RNA of SGK2 (siSGK2) group and siSGK2+CCF group; additionally, blank group and LPS group were established; each group was treated with the corresponding agents accordingly. The cell survival rate, expression levels of WNK signaling pathway- and decidualization-related proteins and mRNAs, as well as mitochondrial membrane potential levels, were assessed in each group before and after SGK2 knockdown. RSA mice model was constructed and randomly divided into model group, CCF low-dose group, CCF high-dose group, GSK group, and combined dosing group, with 4 mice in each group. Other 4 normal pregnant female mice were selected as the control group. The number of implanted embryos, viable fetuses, and lost embryos in mice was recorded. The morphological changes of endometrium and decidualization were observed, and WNK signaling pathway- and decidualization-related proteins and mRNAs expressing levels as well as mitochondrial membrane potential levels were all detected. RESULTS Compared with the blank group, the cell survival rate, as well as the protein and mRNA expression levels of SGK2, WNK1, WNK4, prolactin, insulin-like growth factor- binding protein-1, oxidative stress responsive kinase 1, and Ste20-like proline-/alanine-rich kinase were significantly reduced in the LPS group (P<0.05); compared with the LPS group, the cell survival rate and the expression levels of the above- mentioned proteins and mRNAs were significantly increased in the CCF group, while the cell survival rate and the expression levels of the above-mentioned proteins and mRNAs were significantly decreased in the GSK group (P<0.05); compared with the CCF group, the cell survival rate and the expression levels of the above-mentioned proteins and mRNAs were significantly reduced in the CCF+GSK group (P<0.05). After knocking down SGK2, compared with the LPS group, the cell survival rate, red/green fluorescence intensity ratio, and the expression levels of the above-mentioned proteins and mRNAs were significantly reduced in the siSGK2 group (P<0.05); compared with the siSGK2 group, the cell survival rate, red/green fluorescence intensity ratio, and the expression levels of the above-mentioned proteins and mRNAs were significantly increased in the siSGK2+CCF group (P<0.05). The in vivo experimental results showed that CCF treatment can significantly improve the number of implanted embryos and viable fetuses in RSA model mice and reduce lost embryos, the expression levels of the above-mentioned proteins and mRNAs in endometrial tissue were significantly increased, and the red/green fluorescence intensity ratio was significantly increased (P< 0.05); the combined dosing group could reverse the effect of CCF (P<0.05). CONCLUSIONS CCF can activate SGK2, up- regulate the WNK signaling pathway, promote endometrial decidualization, and improve RSA.
10.Characteristics and influencing factors of hearing loss among noise-exposed workers in a large machinery maintenance enterprise
Fang JI ; Jian ZHANG ; Xiaowen DING ; Xianglan CUI ; Li RONG ; Xuefeng WANG ; Jue LI
Journal of Environmental and Occupational Medicine 2024;41(1):77-82
Background The current increasing trend of new cases of occupational noise-induced deafness indicates that the hearing loss of occupational population has not been effectively controlled in China. It is of great significance to study the characteristics of hearing loss among noise-exposed workers and its related factors. Objective To investigate characteristics and influencing factors of hearing loss among occupational noise-exposed workers in a large machinery maintenance enterprise, and to provide a scientific basis to prevent and control noise-induced hearing loss. Methods A cross-sectional survey was conducted to investigate male Han occupational noise-exposed workers in a large mechanical maintenance enterprise. We acquired demographic characteristics, occupational exposure history, and individual life behavior characteristics of the workers through questionnaires, collected occupational exposure level data from annual occupational disease hazard factor surveillance reports, obtained pure tone hearing threshold test data through occupational health examinations, and estimated individual noise exposure levels using cumulative noise exposure (CNE). According to the results of pure tone air conduction hearing threshold test, the workers were divided into a hearing loss group and a normal hearing group. The chi-square test was employed to compare the occupational exposure characteristics and individual life behavior characteristics between the two groups. Additionally, the trend chi-square test was utilized to analyze the changing trends of age, length of service, CNE, and hearing loss rate within the two groups. The relationship between high-frequency hearing loss in both ears and its related influencing factors was assessed by a multiple logistic regression model. Results The M (P25, P75) of CNE for the 2531 occupational noise-exposed workers was 97.51 (95.39, 99.96) dB(A)·year. The incidence of hearing anomaly, binaural high-frequency hearing anomaly, random ear high-frequency hearing anomaly, binaural low-frequency hearing anomaly, and random ear low-frequency hearing anomaly were 22.48%, 16.59%, 22.13%, 2.77%, and 3.52%, respectively. High-frequency hearing threshold increase was the main reason for hearing anomaly (98.42%). In comparison to the CNE ≤ 97 dB(A)·year group, the 97 dB(A)·year


Result Analysis
Print
Save
E-mail