1.Simultaneous TAVI and McKeown for esophageal cancer with severe aortic regurgitation: A case report
Liang CHENG ; Lulu LIU ; Xin XIAO ; Lin LIN ; Mei YANG ; Jingxiu FAN ; Hai YU ; Longqi CHEN ; Yingqiang GUO ; Yong YUAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):277-280
A 71-year-old male presented with esophageal cancer and severe aortic valve regurgitation. Treatment strategies for such patients are controversial. Considering the risks of cardiopulmonary bypass and potential esophageal cancer metastasis, we successfully performed transcatheter aortic valve implantation and minimally invasive three-incision thoracolaparoscopy combined with radical resection of esophageal cancer (McKeown) simultaneously in the elderly patient who did not require neoadjuvant treatment. This dual minimally invasive procedure took 6 hours and the patient recovered smoothly without any surgical complications.
2.Efficacy Mechanism of Xianlian Jiedu Prescription Against Colorectal Cancer Recurrence vias Regulating Angiogenesis
Yanru XU ; Lihuiping TAO ; Jingyang QIAN ; Weixing SHEN ; Jiani TAN ; Chengtao YU ; Minmin FAN ; Changliang XU ; Yueyang LAI ; Liu LI ; Dongdong SUN ; Haibo CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):79-87
ObjectiveTo explore effect of Xianlian Jiedu prescription on the recurrence of colorectal cancer (CRC) and investigate the related mechanisms. MethodsA postoperative recurrence model was established in 25 Balb/c mice by injecting CT26 cells subcutaneously into the armpit, followed by surgical removal of 99% of the subcutaneous tumor. The mice were randomly divided into model group, low-dose Xianlian Jiedu prescription (XLJDP-L) group (6.45 g·kg-1·d-1), medium-dose Xianlian Jiedu prescription (XLJDP-M) group (12.9 g·kg-1·d-1), high-dose Xianlian Jiedu prescription (XLJDP-H) group (25.8 g·kg-1·d-1), and 5-fluorouracil (5-FU) group (1×10-3 g·kg-1·d-1). The mice were euthanized after 14 days of continuous intervention, and recurrent tumor tissue was harvested. Hematoxylin and eosin (HE) staining was used to observe pathological and morphological changes in the recurrent tumor tissue. Immunohistochemistry (IHC) was employed to assess the expression of proliferating cell nuclear antigen (Ki67), vascular endothelial growth factor (VEGF), and platelet-endothelial cell adhesion molecule (CD31) in recurrent tumor tissue. The Western blot was used to detect the protein expression levels of angiopoietin-2 (ANG-2), VEGF, phosphorylated-protein kinase B (p-Akt), protein kinase B (Akt), phosphorylated-phosphatidylinositol 3-kinase (p-PI3K), and phosphatidylinositol 3-kinase (PI3K) in recurrent tumor tissue. ResultsBefore treatment, there were no statistical differences in tumor volume, tumor weight, and body mass among the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group compared to the model group, indicating model stability. After treatment, compared with those in the model group, the tumor volume and tumor weight in the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly reduced (P<0.01), showing dose dependency. Meanwhile, there were no significant differences in body weight among the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group compared to the model group. HE staining showed that compared with that in the model group, tumor tissue in the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group had loosely arranged cells, increased intercellular spaces, small and shriveled nuclei, light staining, fewer mitotic figures and atypical nuclei, and increased necrotic areas. IHC showed that compared with those of the model group, the positive rates of Ki67, VEGF, and CD31 in the recurrent tumor tissue of the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly reduced (P<0.01) in a dose-dependent manner. Western blot results showed that compared with those of the model group, the protein expression levels of ANG-2 and VEGF in the recurrent tumor tissue of the XLJDP-L, XLJDP-M, and XLJDP-H groups and the 5-FU group were significantly downregulated (P<0.05, P<0.01), and the p-Akt/Akt and p-PI3K/PI3K ratios were significantly decreased in a dose-dependent manner (P<0.05, P<0.01). ConclusionXianlian Jiedu prescription significantly inhibits the recurrence of CRC in mice after subcutaneous tumor surgery. The mechanism may involve regulating the PI3K/Akt pathway and downregulating key angiogenic proteins such as ANG-2, VEGF, and CD31.
3.Advances in inflammatory response mechanism and anti-inflammatory treatment with dry eye disease
Pingping WANG ; Fan JIANG ; Simin LI ; Dongxia YAN ; Juan CHENG
International Eye Science 2025;25(3):440-445
In recent years, the incidence of dry eye disease(DED)is increasing, positioning it as one of the most prevalent diseases affecting the ocular surface. Inflammatory response is the pathological basis of DED, involving various inflammatory mediators and inflammatory signaling pathways. Consequently, anti-inflammatory treatment emerges as a fundamental strategy for preventing and managing DED. This review summarizes the classic inflammatory factors involved in the development and progression of DED, including interleukins, tumor necrosis factor, matrix metalloproteinases, chemokines, and cell adhesion molecules. It also discusses the relevant inflammatory signaling pathways: the MAPKs pathway, NF-κB pathway, Wnt pathway and TLR pathway. Additionally, this review addresses the mechanisms of action and alterations in relevant biomarkers associated with current first-line recommended anti-inflammatory therapies, including corticosteroids, immunosuppressants, nonsteroidal anti-inflammatory drugs, and traditional Chinese medicine approaches to inflammation management. This comprehensive overview aims to enhance understanding of the inflammatory mechanisms underlying DED while exploring future therapeutic prospects.
4.Advances in inflammatory response mechanism and anti-inflammatory treatment with dry eye disease
Pingping WANG ; Fan JIANG ; Simin LI ; Dongxia YAN ; Juan CHENG
International Eye Science 2025;25(3):440-445
In recent years, the incidence of dry eye disease(DED)is increasing, positioning it as one of the most prevalent diseases affecting the ocular surface. Inflammatory response is the pathological basis of DED, involving various inflammatory mediators and inflammatory signaling pathways. Consequently, anti-inflammatory treatment emerges as a fundamental strategy for preventing and managing DED. This review summarizes the classic inflammatory factors involved in the development and progression of DED, including interleukins, tumor necrosis factor, matrix metalloproteinases, chemokines, and cell adhesion molecules. It also discusses the relevant inflammatory signaling pathways: the MAPKs pathway, NF-κB pathway, Wnt pathway and TLR pathway. Additionally, this review addresses the mechanisms of action and alterations in relevant biomarkers associated with current first-line recommended anti-inflammatory therapies, including corticosteroids, immunosuppressants, nonsteroidal anti-inflammatory drugs, and traditional Chinese medicine approaches to inflammation management. This comprehensive overview aims to enhance understanding of the inflammatory mechanisms underlying DED while exploring future therapeutic prospects.
5.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
6.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
9.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
10.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.

Result Analysis
Print
Save
E-mail