1.Chinese expert consensus on postoperative follow-up for non-small cell lung cancer (version 2025)
Lunxu LIU ; Shugeng GAO ; Jianxing HE ; Jian HU ; Di GE ; Hecheng LI ; Mingqiang KANG ; Fengwei TAN ; Fan YANG ; Qiang PU ; Kaican CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(03):281-290
Surgical treatment is one of the key approaches for non-small cell lung cancer (NSCLC). Regular postoperative follow-up is crucial for early detection and timely management of tumor recurrence, metastasis, or second primary tumors. A scientifically sound and reasonable follow-up strategy not only extends patient survival but also significantly improves quality of life, thereby enhancing overall prognosis. This consensus aims to build upon the previous version by incorporating the latest clinical research advancements and refining postoperative follow-up protocols for early-stage NSCLC patients based on different treatment modalities. It provides a scientific and practical reference for clinicians involved in the postoperative follow-up management of NSCLC. By optimizing follow-up strategies, this consensus seeks to promote the standardization and normalization of lung cancer diagnosis and treatment in China, helping more patients receive high-quality care and long-term management. Additionally, the release of this consensus is expected to provide insights for related research and clinical practice both domestically and internationally, driving continuous development and innovation in the field of postoperative management for NSCLC.
2.Effects of loganin on inflammatory response and intestinal barrier damage in septic rats
Can WANG ; Yantao LI ; Zheng ZHOU ; Lupeng WANG ; Yuanyuan GAO ; Shaoxi FAN
China Pharmacy 2025;36(5):574-578
OBJECTIVE To investigate the effects of loganin on inflammatory response and intestinal barrier damage in septic rats by regulating the Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil forming protein kinase 1 (ROCK1) signaling pathway. METHODS A sepsis rat model was established by cecal ligation and puncture, and randomly divided into sepsis group, loganin low-dose group (50 mg/kg loganin, gavage), loganin high-dose group (200 mg/kg loganin, gavage), positive control group (0.2 mg/kg atorvastatin, intraperitoneal injection), and loganin high-dose + lysophosphatidic acid (LPA) group (200 mg/kg loganin gavage and intraperitoneal injection of 10 mg/kg RohA activator LPA). An additional sham surgery group was established. Each group consisted of 10 rats, and medications were administered once every 6 hours for 4 times. After 24 hours of the last intervention, the levels of serum inflammatory factors interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and IL-1β were detected. The pathological changes of ileal tissue were observed and Chiu’s intestinal mucosal injury score was also performed. The levels of intestinal function-lactate dehydrogenase (D-lactate), D-amino acid oxidase (DAO) and endotoxin, the percentages of zonula occludens-1 protein (ZO-1) and Occludin positive staining area, as well as protein expressions of RhoA, and ROCK1 were all detected. com RESULTS Compared with the sepsis group, the percentages of ZO-1 and Occludin positive areas increased significantly in loganin low-dose and high-dose groups; while the levels of IL-6, TNF-α, IL-1β, DAO, D-lactate and endotoxin, Chiu’s intestinal mucosal injury score as well as protein expressions of RhoA and ROCK1 decreased significantly (P<0.05); the destruction of rat ileal tissue was alleviated, and tissue edema and inflammatory infiltration were significantly reduced; moreover, the improvement effect in loganin high-dose group was superior to that in loganin low-dose group (P<0.05). Compared with loganin high-dose group, RhoA activator LPA reversed the trend of changes in the above indicators (P<0.05). CONCLUSIONS Loganin can alleviate inflammatory response and intestinal barrier damage in septic rats, the mechanism of which may be associated with inhibiting RhoA/ROCK1 signaling pathway.
3.Principles, technical specifications, and clinical application of lung watershed topography map 2.0: A thoracic surgery expert consensus (2024 version)
Wenzhao ZHONG ; Fan YANG ; Jian HU ; Fengwei TAN ; Xuening YANG ; Qiang PU ; Wei JIANG ; Deping ZHAO ; Hecheng LI ; Xiaolong YAN ; Lijie TAN ; Junqiang FAN ; Guibin QIAO ; Qiang NIE ; Mingqiang KANG ; Weibing WU ; Hao ZHANG ; Zhigang LI ; Zihao CHEN ; Shugeng GAO ; Yilong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(02):141-152
With the widespread adoption of low-dose CT screening and the extensive application of high-resolution CT, the detection rate of sub-centimeter lung nodules has significantly increased. How to scientifically manage these nodules while avoiding overtreatment and diagnostic delays has become an important clinical issue. Among them, lung nodules with a consolidation tumor ratio less than 0.25, dominated by ground-glass shadows, are particularly worthy of attention. The therapeutic challenge for this group is how to achieve precise and complete resection of nodules during surgery while maximizing the preservation of the patient's lung function. The "watershed topography map" is a new technology based on big data and artificial intelligence algorithms. This method uses Dicom data from conventional dose CT scans, combined with microscopic (22-24 levels) capillary network anatomical watershed features, to generate high-precision simulated natural segmentation planes of lung sub-segments through specific textures and forms. This technology forms fluorescent watershed boundaries on the lung surface, which highly fit the actual lung anatomical structure. By analyzing the adjacent relationship between the nodule and the watershed boundary, real-time, visually accurate positioning of the nodule can be achieved. This innovative technology provides a new solution for the intraoperative positioning and resection of lung nodules. This consensus was led by four major domestic societies, jointly with expert teams in related fields, oriented to clinical practical needs, referring to domestic and foreign guidelines and consensus, and finally formed after multiple rounds of consultation, discussion, and voting. The main content covers the theoretical basis of the "watershed topography map" technology, indications, operation procedures, surgical planning details, and postoperative evaluation standards, aiming to provide scientific guidance and exploration directions for clinical peers who are currently or plan to carry out lung nodule resection using the fluorescent microscope watershed analysis method.
4.The distribution pattern of traditional Chinese medicine syndromes and influencing factors for primary liver cancer: An analysis of 415 cases
Zhiyao SHI ; Xiaofei FAN ; Yu GAO ; Shaojian REN ; Shiyu WU ; Xixing WANG
Journal of Clinical Hepatology 2025;41(1):84-91
ObjectiveTo investigate the influencing factors for traditional Chinese medicine (TCM) syndromes of primary liver cancer, and to provide a theoretical basis for the TCM syndrome differentiation and standardized treatment of liver cancer. MethodsTCM syndrome differentiation was performed for 415 patients who were admitted to Shanxi Institute of Traditional Chinese Medicine and were diagnosed with primary liver cancer based on pathological or clinical examinations from January 2019 to December 2023. The chi-square test was used for comparison of categorical data between groups, and the unordered polytomous logistic regression model was used to investigate the influencing factors for TCM syndromes of liver cancer. ResultsThe common initial symptoms of the 415 patients with primary liver cancer included pain in the liver area (31.81%), abdominal distension (25.30%), abdominal pain (15.18%), and weakness (13.98%), and the main clinical symptoms included poor appetite (70.84%), fatigue (69.16%), pain in the liver area (67.47%), poor sleep (59.04%), abdominal distension (53.01%), and constipation (52.53%). There were significant differences in TCM syndromes between patients with different sexes, courses of the disease, clinical stages, Child-Pugh classes, presence or absence of intrahepatic and extrahepatic metastasis, and presence or absence of transcatheter arterial chemoembolization (TACE) and radiofrequency ablation (all P<0.05). The logistic regression analysis showed that male sex was a risk factor for damp-heat accumulation (odds ratio [OR]=2.036, P=0.048) and the syndrome of spleen-kidney Yang deficiency (OR=5.240, P<0.001); a course of disease of<1 year was a risk factor for damp-heat accumulation (OR=2.837, P=0.004) and syndrome of Qi stagnation and blood stasis (OR=2.317, P=0.021), but it was a protective factor against syndrome of spleen-kidney Yang deficiency (OR=0.385, P=0.005); Child-Pugh class A/B was a protective factor against liver-kidney Yin deficiency (OR=0.079, P<0.001); intrahepatic metastasis was a risk factor for liver-kidney Yin deficiency (OR=5.117, P=0.003) and syndrome of spleen-kidney Yang deficiency (OR=3.303, P=0.010); TACE was a protective factor against liver-kidney Yin deficiency (OR=0.171, P<0.001) and syndrome of spleen-kidney Yang deficiency (OR=0.138, P<0.001); radiofrequency ablation was a risk factor for damp-heat accumulation (OR=4.408, P<0.001) and liver-kidney Yin deficiency (OR=32.036, P<0.001). ConclusionSex, course of disease, Child-Pugh class, intrahepatic metastasis, TACE, and radiofrequency ablation are the main influencing factors for TCM syndromes of liver cancer.
5.Clinical Observation of Guben Quyu Jiedu Prescription in Treating Nocturnal Hypoxemia of COPD Combined with OSAHS
Yi HE ; Ziyu LI ; Wenjiang ZHANG ; Jinzhu GAO ; Changzheng FAN ; Beibei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):146-153
ObjectiveTo observe the clinical efficacy and safety of Guben Quyu Jiedu prescription in treating nocturnal hypoxemia of chronic obstructive pulmonary disease (COPD) combined with Obstructive sleep apnea hypopnea syndrome ( OSAHS ) (deficiency of lung, spleen and kidney with blood stasis and toxicity). MethodsThe paper used a forward-looking, random double-blind, placebo-controlled design method to select 96 patients with COPD combined with OSAHS, and their traditional Chinese medicines (TCM) syndrome differentiation was deficiency of lung, spleen and kidney with blood stasis and toxicity. These patients were randomly divided into the observation group and the control group, with 48 cases in each group. Based on conventional Western medicine treatment, the observation group was treated with Guben Quyu Jiedu prescription and the control group was treated with traditional Chinese medicine placebo. Both courses of treatment were 90 days. Then the paper compared the changes in minimum pulse oxygen saturation (SpO2) during the night, apnea index (AHI), OSAHS efficacy evaluation, TCM syndrome efficacy evaluation, and TCM symptom score before and after treatment between the two groups. ResultsThere were 5 withdrawals in the observation group and 8 withdrawals in the control group, so 43 cases in the observation group and 40 cases in the control group completed the trial. Compared with the condition before treatment, the minimum SpO2 during the night and AHI in the observation group were significantly improved at night (P<0.01) and were better than those in the control group (P<0.01). OSAHS efficacy in the observation group was better than in the control group (χ2=7.085, P<0.05). In terms of TCM syndrome efficacy, the total effective rate was 81.40% (35/43) in the observation group, significantly higher than that in the control group, which was 15.00% (6/40) (χ2=36.78, P<0.01). The TCM symptom scores of the two groups were improved compared with the condition before treatment, and the effect of the two groups was similar in the four main symptoms of snoring, choking, lethargy, and cough. However, the observation group was better than the control group in 10 details such as dizziness, headache, chest tightness, chest pain, wheezing, dry mouth, and thirst (P<0.05). ConclusionUsing Guben Quyu Jiedu prescription combined with conventional Western medicine can treat COPD combined with OSAHS hypoxemia at night (deficiency of lung, spleen and kidney with blood stasis and toxicity). In this way, the minimum pulse oxygen saturation (SpO2) of patients, the level of disease control, and the quality of life of patients can be improved, and the clinical symptoms can be relieved.
6.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
7.Protective Effect of Shengxiantang on Myocardial Microvascular Injury in Rats with Chronic Heart Failure
Hui GAO ; Zeqi YANG ; Fan GAO ; Hongjing LI ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):35-42
ObjectiveTo explore the protective effect of Shengxiantang on cardiac function and myocardial microvascular injury in rats with chronic heart failure (CHF). MethodsThe CHF rat model was prepared by aortic arch constriction (TAC). Of the 72 SD rats, 8 were randomly selected as the sham operation group, where the chest was opened without ligating the aortic arch. The 40 successfully modeled rats were randomly divided into the model group, the Shengxiantang low-, medium-, and high-dose groups (5.1, 10.2, 20.4 g·kg-1), and the trimetazidine group (6.3 mg·kg-1), with 8 rats in each group. Drug administration began 4 weeks after modeling. The administration groups received the corresponding drugs by gavage, while the sham operation and model groups were given the same amount of distilled water for 8 consecutive weeks. Echocardiography was used to assess cardiac function. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of nitric oxide (NO), endothelin (ET-1), vascular endothelial growth factor (VEGF), and von Willebrand factor (vWF). Ultrastructural changes of microvessels were observed by transmission electron microscopy. Immunohistochemistry was used to detect the expression levels of ATP synthase subunit (ATP5D) and F-actin in myocardial tissue. Western blot was used to detect the expression levels of occludin, claudin, vascular endothelial cadherin (VE-Cadherin), and zonula occludens-1 (ZO-1). Microvessel density was measured by immunofluorescence staining. ResultsCompared with the sham operation group, the ejection fraction (EF) and left ventricular shortening fraction (FS) in the model group were significantly decreased (P<0.01), while the left ventricular diastolic diameter (LVIDd), left ventricular systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs) were significantly increased (P<0.01). The levels of NO and VEGF were significantly decreased (P<0.01), while the levels of ET-1 and vWF were significantly increased (P<0.01). Under electron microscopy, the microvascular basement membrane was incomplete and the tight junctions were blurred. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin were significantly decreased (P<0.05, P<0.01), and the relative density of microvessels was significantly reduced (P<0.05, P<0.01). After intervention with Shengxiantang, the EF and FS of CHF rats significantly increased (P<0.01), while the LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs significantly decreased (P<0.01). The levels of NO and VEGF significantly increased (P<0.01), while the levels of ET-1 and vWF significantly decreased (P<0.01). Under electron microscopy, the microvascular basement membrane was relatively complete and the tight junctions were more continuous. The expression levels of ATP5D, F-actin, occludin, claudin, ZO-1, and VE-Cadherin significantly increased (P<0.05, P<0.01), and the relative density of microvessels significantly increased (P<0.01). ConclusionShengxiantang can effectively improve the cardiac function of CHF rats, reduce microvascular endothelial injury, strengthen the connection between endothelial cells, and increase microvessel density, thereby protecting myocardial microvascular injury.
8.Effect of Yiqi Wenyang Huoxue Lishui Components on Cardiac Function and Mitochondrial Energy Metabolism in CHF Rats
Hui GAO ; Zeqi YANG ; Xin LIU ; Fan GAO ; Yangyang HAN ; Aiyangzi LU ; Xingchao LIU ; Qiuhong GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):27-36
ObjectiveTo investigate the effects of Yiqi Wenyang Huoxue Lishui components on the cardiac function and mitochondrial energy metabolism in the rat model of chronic heart failure (CHF) and explore the underlying mechanism. MethodsThe rat model of CHF was prepared by transverse aortic constriction (TAC). Eight of the 50 SD rats were randomly selected as the sham group, and the remaining 42 underwent TAC surgery. The 24 SD rats successfully modeled were randomized into model, trimetazidine (6.3 mg·kg-1), and Yiqi Wenyang Huoxue Lishui components (60 mg·kg-1 total saponins of Astragali Radix, 10 mg·kg-1 total phenolic acids of Salviae Miltiorrhizae Radix et Rhizoma, 190 mg·kg-1 aqueous extract of Lepidii Semen, and 100 mg·kg-1 cinnamaldehyde) groups. The rats were administrated with corresponding agents by gavage, and those in the sham and model groups were administrated with the same amount of normal saline at a dose of 10 mL·kg-1 for 8 weeks. Echocardiography was used to examine the cardiac function in rats. Enzyme-linked immunosorbent assay was employed to determine the serum levels of N-terminal pro-B-type natriuretic peptide (NT-ProBNP), hypersensitive troponin(cTnI), creatine kinase (CK), lactate dehydrogenase (LD), free fatty acids (FFA), superoxide dismutase (SOD), and malondialdehyde (MDA). The colorimetric assay was employed to measure the levels of adenosine triphosphate (ATP), adenosine diphosphate (ADP), and adenosine monophosphate (AMP) in the myocardial tissue. The pathological changes in the myocardial tissue were observed by hematoxylin-eosin staining and Masson staining. The Na+-K+-ATPase and Ca2+-Mg2+-ATPase activities in the myocardial tissue were determined by the colorimetric assay. The ultrastructural changes of myocardial mitochondria were observed by transmission electron microscopy. Western blot was employed to determine the protein levels of ATP synthase subunit delta (ATP5D), glucose transporter 4 (GLUT4), and carnitine palmitoyltransferase-1 (CPT-1). The mitochondrial complex assay kits were used to determine the activities of mitochondrial complexes Ⅰ, Ⅱ, Ⅲ, and Ⅳ. ResultsCompared with the sham group, the model group showed a loosening arrangement of cardiac fibers, fracture and necrosis of partial cardiac fibers, inflammatory cells in necrotic areas, massive blue fibrotic tissue in the myocardial interstitium, increased collagen fiber area and myocardial fibrosis, destroyed mitochondria, myofibril disarrangement, sparse myofilaments, and fractured and reduced cristae. In addition, the rats in the model group showed declined ejection fraction (EF) and fractional shortening (FS), risen left ventricular end-diastolic diameter (LVIDd), left ventricular end-systolic diameter (LVIDs), left ventricular end-diastolic posterior wall thickness (LVPWd), left ventricular end-systolic posterior wall thickness (LVPWs), left ventricular end-diastolic volume (LVVOLd), and left ventricular end-systolic volume (LVVOLs), elevated levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, lowered level of SOD, down-regulated protein levels of GLUT4 and CPT-1, decreased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and declined levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). Compared with the model group, the Yiqi Wenyang Huoxue Lishui components and trimetazidine groups showed alleviated pathological damage of the mitochondria and mycardial tissue, risen EF and FS, declined LVIDd, LVIDs, LVPWd, LVPWs, LVVOLd, and LVVOLs, lowered levels of NT-ProBNP, cTnI, CK, MDA, FFA, and LD, elevated level of SOD, up-regulated protein levels of GLUT4 and CPT-1, increased activities of Na+-K+-ATPase, Ca2+-Mg2+-ATPase, and respiratory complexes Ⅰ-Ⅳ, and elevated levels of ATP5D, ATP, ADP, and AMP (P<0.05, P<0.01). ConclusionYiqi Wenyang Huoxue Lishui components can improve the cardiac function, reduce myocardial injury, regulate glucose and lipid metabolism, optimize the utilization of substrates, and alleviate the damage of mitochondrial structure and function, thus improving the energy metabolism of the myocardium in the rat model of CHF.
9.Equity of human resource allocation in centers for disease control and prevention in China based on agglomeration degree
FAN Jun ; JIN Yuya ; GAO Weiwei
Journal of Preventive Medicine 2025;37(1):86-91
Objective:
To evaluate the equity of human resource allocation in centers for disease control and prevention (CDCs) in China, so as to provide insights into optimizing human resource and promoting the high-quality development of CDCs.
Methods:
The number, age, educational level and professional title of CDCs personnel from 2017 to 2021 were collected from China Health Statistics Yearbook and China Statistical Yearbook. General information of human resource in CDCs across different provinces (autonomous regions, municipalities) was described, and the equity of human resource allocation was assessed using agglomeration degree.
Results:
The number of personnel in CDCs was 190 730 in 2017, and it began to increase from 2020, reaching 209 550 in 2021, with an average annual growth rate of 2.47%. The staffing gap decreased from 52 534 to 37 655. The proportion of personnel aged 55 years and older increased from 10.74% to 16.69%, the proportion of personnel with a bachelor's degree or above increased from 36.50% to 47.80%, the proportion of personnel with senior professional titles increased from 9.75% to 13.31%, and the number of personnel per 10 000 permanent residents increased from 1.36 to 1.48. Agglomeration degree analysis indicated that the equity of human resource allocation in terms of both geography and population was relatively good among the CDCs of 12 provinces (autonomous regions, municipalities) including Beijing, Tianjin and Liaoning; the equity of human resource allocation was relatively good in terms of geography and was relatively poor in terms of population among 11 provinces (autonomous regions, municipalities) including Shanghai, Jiangsu and Zhejiang; the equity of human resource allocation was relatively poor in terms of geography and was relatively good in terms of population among the CDCs of 8 provinces (autonomous regions, municipalities) including Inner Mongolia, Heilongjiang and Hainan.
Conclusions
Although there was an increase in the number of personnel in CDCs from 2017 to 2021, the growth rate was low. There were differences in the equity of human resource allocation among provinces (autonomous regions, municipalities), with a relative shortage of human resource in CDCs in the east area.
10.Mechanism of Buyang Huanwutang in Inhibiting Ferroptosis and Enhancing Neurological Function Recovery After Spinal Cord Injury via GPX4-ACSL4 Axis
Luchun XU ; Guozheng JIANG ; Yukun MA ; Jiawei SONG ; Yushan GAO ; Guanlong WANG ; Jiaojiao FAN ; Yongdong YANG ; Xing YU ; Xiangsheng TANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):20-30
ObjectiveTo explore the mechanism by which Buyang Huanwutang regulates the glutathione peroxidase 4 (GPX4)-acyl-CoA synthetase long-chain family member 4 (ACSL4) axis to inhibit ferroptosis and promote neurological functional recovery after spinal cord injury (SCI). MethodsNinety rats were randomly divided into five groups: sham operation group, model group, low-dose Buyang Huanwutang group (12.5 g·kg-1), high-dose Buyang Huanwutang group (25 g·kg-1), and Buyang Huanwutang + inhibitor group (25 g·kg-1 + 5 g·kg-1 RSL3). The SCI model was established by using the allen method. Tissue was collected on the 7th and 28th days after operation. Motor function was assessed by using the Basso-Beattie-Bresnahan (BBB) scale. Hematoxylin-eosin (HE), Nissl, and Luxol fast blue (LFB) staining were performed to observe spinal cord histopathology. Transmission electron microscopy was used to examine mitochondrial ultrastructure. Immunofluorescence staining was used to detect the number of NeuN-positive cells and the fluorescence intensity of myelin basic protein (MBP), GPX4, and ACSL4. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) was used to analyze the mRNA expression of GPX4 and ACSL4. Enzyme linked immunosorbent assay (ELISA) was performed to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD). Colorimetric assays were used to determine the iron content in spinal cord tissue. ResultsCompared to the sham operation group, the model group exhibited significantly reduced BBB scores (P<0.01), severe pathological damage in spinal cord tissue, and marked mitochondrial ultrastructural disruption. In addition, the model group showed a decrease in the number of NeuN-positive cells (P<0.01), reduced fluorescence intensity of MBP and GPX4 (P<0.01), lower levels of GSH and SOD (P<0.01), and downregulated mRNA expression of GPX4 (P<0.01). Moreover, compared to the sham operation group, the model group had elevated levels of ROS, MDA, and tissue iron content (P<0.01), along with increased fluorescence intensity and mRNA expression of ACSL4 (P<0.01). Compared with the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group showed significantly improved BBB scores (P<0.05, P<0.01) and exhibited less severe spinal cord tissue damage, reduced edema and inflammatory cell infiltration, increased neuronal survival, and more intact myelin structures. Additionally, mitochondrial ultrastructure was significantly improved in the Buyang Huanwutang group. Compared to the model group and Buyang Huanwutang + inhibitor group, the Buyang Huanwutang group significantly increased the number of NeuN-positive cells and the fluorescence intensity of MBP (P<0.05, P<0.01). Furthermore, Buyang Huanwutang significantly increased the fluorescence intensity and mRNA expression of GPX4 (P<0.01) and decreased the fluorescence intensity and mRNA expression of ACSL4 (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. Finally, the Buyang Huanwutang group significantly decreased ROS, MDA, and tissue iron content (P<0.01) and significantly increased GSH and SOD levels (P<0.01) compared to the model group and Buyang Huanwutang + inhibitor group. ConclusionBuyang Huanwutang inhibits ferroptosis through the GPX4/ACSL4 axis, reduces secondary neuronal and myelin injury and oxidative stress, and ultimately promotes the recovery of neurological function.


Result Analysis
Print
Save
E-mail