1.Herbal Textual Research on Spatholobi Caulis in Famous Classical Formulas
Yajie XIANG ; Yangyang LIU ; Jian FENG ; Chun YAO ; Erwei HAO ; Wenlan LI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):238-248
Through consulting herbal medicine, medical books, and local chronicles from past dynasties to modern times, this paper systematically researched Spatholobi Caulis from name, origin, producing areas, harvesting, processing, usage, quality evaluation, functions and indications, providing a reference for the development and utilization of famous classical formulas containing Spatholobi Caulis. According to the research, Spatholobi Caulis was first recorded in the Annals of Shunning Prefecture from the Qing dynasty. It was originally a medicinal herb commonly used in Shunning, Yunnan, and was named from the red juice resembling chicken blood that flowed out after the vein was cut off. The mainstream original plants of each dynasty were Kadsura heteroclita and Spatholobus suberectus. Among them, K. heteroclita mainly focused on dispersing blood stasis and unblocking meridians, mainly treating rheumatic pain and injuries caused by falls or blows, and it is mostly used as the raw material of Jixueteng ointments. S. suberectus was commonly used as decoction pieces in decoction, which had the functions of promoting blood circulation and replenishing blood, activating meridians and collaterals, and mainly used for treating anemia, irregular menstruation, and rheumatic bone pain. The production area of Spatholobi Caulis recorded in the Qing dynasty was Yunnan. Currently, the main production area of S. suberectus is Guangxi, while the main production area of K. interior is Yunnan. In the Qing dynasty, the usage of Spatholobi Caulis was an individual prescription with other herbs before making ointments, which was usually composed of the juice of it, safflower, angelica, and glutinous rice. But in modern times, Spatholobi Caulis is mostly sliced and dried for use. The quality of Spatholobi Caulis is often determined by the number of reddish-brown concentric circles on the cut surface, with a higher number indicating better quality. Additionally, the presence of resinous secretions is also considered desirable. Based on the research findings, it is suggested that when developing famous classical formulas containing Spatholobi Caulis, the choice of the primary source should be S. suberectus or K. heteroclita, taking into consideration the therapeutic effects of the formula. It is also recommended that the latest plant classification be referenced in the next edition of Chinese Pharmacopoeia, adjusting the primary source of Kadsurae Caulis to K. heteroclita to avoid confusion caused by inconsistent original names, and the functions adjust to promote Qi circulation and relieve pain, disperse blood stasis and unblock collaterals, treating injuries caused by falls and bruises.
2.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
3.Herbal Textual Research on Zanthoxylum armatum and Zanthoxyli Radix in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Yapeng WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):252-262
This article systematically analyzes the historical evolution of the name, origin, medicinal parts, harvesting and processing, and other aspects of Manjiao and Zanthoxyli Radix by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the relevant modern research materials, in order to provide a basis for the development of famous classical formulas containing the two medicinal materials. According to the herbal textual research, Manjiao was first recorded in Shennong Bencaojing of the Han dynasty with aliases such as Zhujiao, Goujiao and Zhijiao. Throughout history, Manjiao was sourced from the stems and roots of Zanthoxylum armatum in the Rutaceae family, and its leaves and fruits can also be used in medicine. The traditional recorded production area was mainly in Yunzhong(now Tuoketuo region in Inner Mongolia), with mentions in Zhejiang, Hunan, Fujian, Guangdong, Guangxi, Yunnan, Taiwan, and other provinces. Presently, this species is distributed from the south of Shandong, to Hainan, Taiwan, Tibet and other regions. The roots can be harvested year-round, while the fruits are harvested in autumn after maturity. In ancient times, the roots and stems were mostly used for brewing or soaking in wine, whereas nowadays, the roots are often sliced and then used as a raw material in traditional Chinese medicine, and the fruits should be stir-fried before use. Manjiao has a bitter taste and warm property, and was historically used to treat wind-cold dampness, joint pain, limb numbness, and knee pain. Modern researches have summarized its effects as dispelling wind, dispersing cold, promoting circulation, and relieving pain, and it is used for treating rheumatoid arthritis, toothache, bruises, as well as an anthelmintic. Zanthoxyli Radix initially known as Rudi Jinniugen, recorded in Bencao Qiuyuan of the Qing dynasty, with the alternate name of Liangbianzhen. In recent times, it is more commonly referred to as Liangmianzhen, sourced from the dried roots of Z. nitidum of the Rutaceae family, mainly produced in Guangxi and Guangdong. It can be harvested throughout the year, cleaned, sliced, and dried after harvesting. Zanthoxyli Radix is pungent, bitter, warm and slightly toxic, with the functions of promoting blood circulation, removing stasis, relieving pain, dispelling wind, and resolving swelling. Based on the results of herbal textual research, it is clarified that the ancient Manjiao and the modern Zanthoxyli Radix are not the same species. This article corrects the mistaken belief of by previous scholars that Zanthoxyli Radix is the same as ancient Manjiao, and suggests that formulas described as Manjiao should use Z. armatum as the medicinal herb, while those described as Liangmianzhen or Rudi Jinniu should use Z. nitidum. The processing was performed according to the processing requirements prescribed in the formulas, otherwise, the raw products are recommended for use.
4.Herbal Textual Research on Abri Herba and Abri Mollis Herba in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):193-201
This article systematically analyzes the historical evolution of the name, origin, academic name, medicinal parts, origin, harvesting, processing and other aspects of Abri Herba and Abri Mollis Herba by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the modern literature, so as to provide a basis for the development of famous classical formulas containing this type of medicinal materials. According to the herbal textual research, Abri Herba was first recorded in Lingnan Caiyaolu, with other aliases such as Huangtoucao and Xiye Longlincao. It originates from the dried whole plant of Abrus cantoniensis, a Fabaceae plant, which can be used medicinally except for its fruits. Currently, this species is mainly distributed in Guangdong and Guangxi, and also found in Hunan and Thailand, it can be harvested throughout the year, mainly in spring and autumn. The roots, stems, and leaves can be used for medicinal purposes, but the pods are toxic and need to be removed. After harvesting, impurities and pods are removed, and it is dried and processed for medicinal use. Abri Herba has a sweet and slightly bitter taste, is cool in nature, and is associated with the liver and stomach meridians, it is used for clearing heat and relieving dampness, dispersing blood stasis and relieving pain, and is mainly used to treat jaundice-type hepatitis, stomach pain, rheumatic bone pain, contusion and ecchymosis pain, and mastitis. Abri Mollis Herba was first recorded in the 1982 edition of Zhongyaozhi as another origin for Abri Herba, and was singled out in some monographs such as Xinhua Bencao Gangyao in 1988 for use, while some other monographs use it as a local habitual products or confused products of Abri Herba with aliases such as Daye Jigucao, Qingtingteng, and Maoxiangsi. It comes from the dried whole herb of A. mollis without pods, and is mainly produced in Guangxi and Guangdong, and occasionally found in Hong Kong, Hainan and Fujian. The collection and processing are similar to Abri Herba, after harvesting, impurities and pods are removed, and it is dried and cut for medicinal use. Abri Mollis Herba has a sweet and light taste, is cool in nature, and is associated with the liver and stomach meridians, with the efficacy of clearing heat and detoxifying, and promoting dampness, it is mainly used to treat infectious hepatitis, mastitis, furuncles, burns and scalds, and pediatric malnutrition. Based on the research, A. mollis was first recorded to be used as a medicine in the same origin as A. cantoniensis, and as plants of the same genus, have similar morphological characteristics, and their medicinal parts, collection and processing, properties and flavors, and meridian affiliations are consistent. And in the folk, Abri Mollis Herba is often used as Abri Herba, which has been used for a long time and is now dominated by the cultivation of A. mollis. So it is recommended that the subsequent version of Chinese Pharmacopoeia should include A. mollis in the origin of Abri Herba, and it is also recommended that in famous classical formulas refered to Jiguccao can use A. cantoniensis and A. mollis as the sources of the herb, refered to Mao Jiguccao can use A. mollis as the sources of the herb. Processing is carried out according to the requirements specified in the original formulas, and raw products are recommended to be included in the medicine if there are no requirements.
5.Herbal Textual Research on Abri Herba and Abri Mollis Herba in Famous Classical Formulas
Zhen ZENG ; Yanmeng LIU ; Yihan WANG ; Erwei HAO ; Chun YAO ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):193-201
This article systematically analyzes the historical evolution of the name, origin, academic name, medicinal parts, origin, harvesting, processing and other aspects of Abri Herba and Abri Mollis Herba by referring to the herbal medicine, medical books, prescription books and other documents of the past dynasties, combined with the modern literature, so as to provide a basis for the development of famous classical formulas containing this type of medicinal materials. According to the herbal textual research, Abri Herba was first recorded in Lingnan Caiyaolu, with other aliases such as Huangtoucao and Xiye Longlincao. It originates from the dried whole plant of Abrus cantoniensis, a Fabaceae plant, which can be used medicinally except for its fruits. Currently, this species is mainly distributed in Guangdong and Guangxi, and also found in Hunan and Thailand, it can be harvested throughout the year, mainly in spring and autumn. The roots, stems, and leaves can be used for medicinal purposes, but the pods are toxic and need to be removed. After harvesting, impurities and pods are removed, and it is dried and processed for medicinal use. Abri Herba has a sweet and slightly bitter taste, is cool in nature, and is associated with the liver and stomach meridians, it is used for clearing heat and relieving dampness, dispersing blood stasis and relieving pain, and is mainly used to treat jaundice-type hepatitis, stomach pain, rheumatic bone pain, contusion and ecchymosis pain, and mastitis. Abri Mollis Herba was first recorded in the 1982 edition of Zhongyaozhi as another origin for Abri Herba, and was singled out in some monographs such as Xinhua Bencao Gangyao in 1988 for use, while some other monographs use it as a local habitual products or confused products of Abri Herba with aliases such as Daye Jigucao, Qingtingteng, and Maoxiangsi. It comes from the dried whole herb of A. mollis without pods, and is mainly produced in Guangxi and Guangdong, and occasionally found in Hong Kong, Hainan and Fujian. The collection and processing are similar to Abri Herba, after harvesting, impurities and pods are removed, and it is dried and cut for medicinal use. Abri Mollis Herba has a sweet and light taste, is cool in nature, and is associated with the liver and stomach meridians, with the efficacy of clearing heat and detoxifying, and promoting dampness, it is mainly used to treat infectious hepatitis, mastitis, furuncles, burns and scalds, and pediatric malnutrition. Based on the research, A. mollis was first recorded to be used as a medicine in the same origin as A. cantoniensis, and as plants of the same genus, have similar morphological characteristics, and their medicinal parts, collection and processing, properties and flavors, and meridian affiliations are consistent. And in the folk, Abri Mollis Herba is often used as Abri Herba, which has been used for a long time and is now dominated by the cultivation of A. mollis. So it is recommended that the subsequent version of Chinese Pharmacopoeia should include A. mollis in the origin of Abri Herba, and it is also recommended that in famous classical formulas refered to Jiguccao can use A. cantoniensis and A. mollis as the sources of the herb, refered to Mao Jiguccao can use A. mollis as the sources of the herb. Processing is carried out according to the requirements specified in the original formulas, and raw products are recommended to be included in the medicine if there are no requirements.
6.Pharmacokinetic study about compatibility of Eucommia ulmoides and Psoralea corylifolia.
Yuxing HUANG ; Erwei LIU ; Xuhua HUANG ; Jia HAO ; Siyuan HU ; Xiumei GAO
Chinese Herbal Medicines 2023;15(2):263-270
OBJECTIVE:
The compatibility of Eucommia ulmoides (Eu) and Psoralea corylifolia (Pc) on the pharmacokinetic (PK) properties in the rat was explored in this study.
METHODS:
Eu extract, Pc extract and the combined extracts (crude drug ratio was 2:1) was administered by gavage, respectively. Two PK experiments were conducted. In first one, the blood samples were collected via the occuli chorioideae vein to get the PK properties of the components. In second one, the blood samples were simultaneously collected via the internal jugular vein or portal vein at different time points and the concentrations of target ingredients were detected by LC/MS/MS to clear the location where the interaction of Eu and Pc took place in vivo.
RESULTS:
Eight of 11 ingredients in Eu and Pc extract were determined in rat plasma. The exposure levels of geniposidic acid (GPA), aucubin (AU), geniposide (GP), pinoresinol diglucoside (PDG), psoralen glycosides (PLG) and isopsoralen glycosides (IPLG) were decreased 1/5-2/3 after administration of combined extracts. Comparing to the combined administration, the exposure of GPA and AU in plasma of single Eu administration collected via the portal vein were decreased 1/3-2/3, and the values of AUC0-24h and AUC0-∞ of GP collected from the portal vein or internal jugular vein were double increased. The other components' parameters were not significantly changed.
CONCLUSION
In summary, the Pc and Eu combined administration could affect the exposure of the main components of Eu extract in rats due to the changed intestinal absorption. The research on the compatibility of Pc and Eu was helpful to guide the clinical administration of Eu and Pc simultaneously.
7.Human 8-cell embryos enable efficient induction of disease-preventive mutations without off-target effect by cytosine base editor.
Yinghui WEI ; Meiling ZHANG ; Jing HU ; Yingsi ZHOU ; Mingxing XUE ; Jianhang YIN ; Yuanhua LIU ; Hu FENG ; Ling ZHOU ; Zhifang LI ; Dongshuang WANG ; Zhiguo ZHANG ; Yin ZHOU ; Hongbin LIU ; Ning YAO ; Erwei ZUO ; Jiazhi HU ; Yanzhi DU ; Wen LI ; Chunlong XU ; Hui YANG
Protein & Cell 2023;14(6):416-432
Approximately 140 million people worldwide are homozygous carriers of APOE4 (ε4), a strong genetic risk factor for late onset familial and sporadic Alzheimer's disease (AD), 91% of whom will develop AD at earlier age than heterozygous carriers and noncarriers. Susceptibility to AD could be reduced by targeted editing of APOE4, but a technical basis for controlling the off-target effects of base editors is necessary to develop low-risk personalized gene therapies. Here, we first screened eight cytosine base editor variants at four injection stages (from 1- to 8-cell stage), and found that FNLS-YE1 variant in 8-cell embryos achieved the comparable base conversion rate (up to 100%) with the lowest bystander effects. In particular, 80% of AD-susceptible ε4 allele copies were converted to the AD-neutral ε3 allele in human ε4-carrying embryos. Stringent control measures combined with targeted deep sequencing, whole genome sequencing, and RNA sequencing showed no DNA or RNA off-target events in FNLS-YE1-treated human embryos or their derived stem cells. Furthermore, base editing with FNLS-YE1 showed no effects on embryo development to the blastocyst stage. Finally, we also demonstrated FNLS-YE1 could introduce known protective variants in human embryos to potentially reduce human susceptivity to systemic lupus erythematosus and familial hypercholesterolemia. Our study therefore suggests that base editing with FNLS-YE1 can efficiently and safely introduce known preventive variants in 8-cell human embryos, a potential approach for reducing human susceptibility to AD or other genetic diseases.
Humans
;
Apolipoprotein E4/genetics*
;
Cytosine
;
Mutation
;
Blastocyst
;
Heterozygote
;
Gene Editing
;
CRISPR-Cas Systems
8.The cGAS-STING signaling in cardiovascular and metabolic diseases: Future novel target option for pharmacotherapy.
Patrick Kwabena ODURO ; Xianxian ZHENG ; Jinna WEI ; Yanze YANG ; Yuefei WANG ; Han ZHANG ; Erwei LIU ; Xiumei GAO ; Mei DU ; Qilong WANG
Acta Pharmaceutica Sinica B 2022;12(1):50-75
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling exert essential regulatory function in microbial-and onco-immunology through the induction of cytokines, primarily type I interferons. Recently, the aberrant and deranged signaling of the cGAS-STING axis is closely implicated in multiple sterile inflammatory diseases, including heart failure, myocardial infarction, cardiac hypertrophy, nonalcoholic fatty liver diseases, aortic aneurysm and dissection, obesity, etc. This is because of the massive loads of damage-associated molecular patterns (mitochondrial DNA, DNA in extracellular vesicles) liberated from recurrent injury to metabolic cellular organelles and tissues, which are sensed by the pathway. Also, the cGAS-STING pathway crosstalk with essential intracellular homeostasis processes like apoptosis, autophagy, and regulate cellular metabolism. Targeting derailed STING signaling has become necessary for chronic inflammatory diseases. Meanwhile, excessive type I interferons signaling impact on cardiovascular and metabolic health remain entirely elusive. In this review, we summarize the intimate connection between the cGAS-STING pathway and cardiovascular and metabolic disorders. We also discuss some potential small molecule inhibitors for the pathway. This review provides insight to stimulate interest in and support future research into understanding this signaling axis in cardiovascular and metabolic tissues and diseases.
9.Multi-omics technology and its applications to life sciences: a review.
Jingfang LIU ; Weilin LI ; Li WANG ; Juan LI ; Erwei LI ; Yuanming LUO
Chinese Journal of Biotechnology 2022;38(10):3581-3593
With technological advances in high-throughput sequencing, high resolution mass-spectrometry, and multi-omics data integrative tools and data repositories, the omics research in life sciences are evolving from single-omics strategy to multi-omics strategy. The research of system biology driven by multi-omics will bring a new paradigm in life sciences. This paper briefly summarizes the development of genomics, epigenomics, transcriptomics, proteomics and metabolomics, highlights the composition and function of multi-omics platforms as well as the applications of multi-omics technology, and prospects future applications of multi-omics in synthetic biology and biomedicine.
Genomics
;
Proteomics/methods*
;
Metabolomics/methods*
;
Epigenomics/methods*
;
Technology

Result Analysis
Print
Save
E-mail