1.Germacranolide sesquiterpenes from Carpesium cernuum and their anti-leukemia activity.
Chen YAN ; Qun LONG ; Yun-Dong ZHANG ; Gajendran BABU ; Madhu Varier KRISHNAPRIYA ; Jian-Fei QIU ; Jing-Rui SONG ; Qing RAO ; Ping YI ; Mao SUN ; Yan-Mei LI
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):528-535
		                        		
		                        			
		                        			In this study, three new germacranolide sesquiterpenes (1-3), together with six related known analogues (4-9) were isolated from the whole plant of Carpesium cernuum. Their structures were established by a combination of extensive NMR spectroscopic analysis, HR-ESIMS data, and ECD calculations. The anti-leukemia activities of all compounds towards three cell lines (HEL, KG-1a, and K562) were evaluated in vitro. Compounds 1-3 exhibited moderate cytotoxicity with IC
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents, Phytogenic/pharmacology*
		                        			;
		                        		
		                        			Asteraceae/chemistry*
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			K562 Cells
		                        			;
		                        		
		                        			Phytochemicals/pharmacology*
		                        			;
		                        		
		                        			Sesquiterpenes, Germacrane/pharmacology*
		                        			
		                        		
		                        	
2.Synthesis and antitumor activity of novel indole podophyllotoxin derivatives.
Dan-Li TIAN ; Chun-Po LIANG ; Jing LIANG ; Hong CHEN
China Journal of Chinese Materia Medica 2019;44(12):2532-2537
		                        		
		                        			
		                        			According to drug design flattening principle,a series of novel indole podophyllotoxin derivatives which were introduced different indole substituents in C-4 position on the basis of podophyllotoxin nucleus were synthesized with the starting material podophyllotoxin and 1 H-indole-5-carboxylic acid. Its anti-tumor activity in vitro was tested in order to screen for high-efficiency and low-toxic compounds. Six target compounds were synthesized,and were confirmed by~1 H-NMR,~(13)C-NMR,HR-ESI-MS and melting point determination analysis. All these target compounds were not reported by previous literature. Using etoposide as positive control drug,all the target compounds were screened for cytotoxicity against He La cells,K562 cells and K562/A02 cell in vitro by MTT method. The antitumor activity screening results showed that compounds 4 b,4 e,4 f exhibited higher inhibitory rate against He La cells and K562 cells than those of control drug VP-16. This route has the advantages on simple operation and reasonable design,provides some practical reference value for the further development on the structure modification of podophyllotoxin and study on anti-tumor activity.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			HeLa Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Indoles
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			K562 Cells
		                        			;
		                        		
		                        			Podophyllotoxin
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			
		                        		
		                        	
3.Eight new cytotoxic annonaceous acetogenins from the seeds of Annona squamosa.
Cheng-Yao MA ; Jia-Hui LU ; Xiang LI ; Xiao LIU ; Jian-Wei CHEN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):291-297
		                        		
		                        			
		                        			Eight new annonaceous acetogenins, squamotin A-D (1-4), annosquatin IV-V (5 and 6), muricin O (7) and squamosten B (8), together with four known ones (9-12) were isolated from the seeds of Annona squamosa. Their structures were elucidated by chemical methods and spectral data. The inhibitory activities of compound 1-9 against three multidrug resistance cell lines were evaluated. All tested compounds showed strong cytotoxicity.
		                        		
		                        		
		                        		
		                        			Acetogenins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Annona
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Antineoplastic Agents, Phytogenic
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			toxicity
		                        			;
		                        		
		                        			Seeds
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
4.Romipeptides A and B, two new romidepsin derivatives isolated from Chromobacterium violaceum No.968 and their antitumor activities in vitro.
Lei XIONG ; Chang-Fa CHEN ; Tao-Ling MIN ; Hai-Feng HU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):155-160
		                        		
		                        			
		                        			Romipeptides A and B (1 and 2), two new romidepsin derivatives, and three known compounds, chromopeptide A (3), romidepsin (4) and valine-leucine dipeptide (5) were isolated from the fermentation broth of Chromobacterium violaceum No. 968. Their structures were elucidated by interpretation of their UV, HR-ESI-MS and NMR spectra. The absolute configuration of compound 1 and 2 were established by single crystal X-ray diffraction analysis. Compounds 1-5 were evaluated for their anti-proliferative activities against three human cancer cell lines, SW620, HL60, and A549. The results showed most of these compounds exhibited antitumor activities in vitro, in which compound 2 displayed potent cytotoxicity to SW620, HL60 and A549 cell lines, with IC of 12.5, 6.7 and 5.7 nmol·L, respectively.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Survival
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Chemistry Techniques, Analytical
		                        			;
		                        		
		                        			Chromobacterium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Depsipeptides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Dipeptides
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Fermentation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Peptides, Cyclic
		                        			;
		                        		
		                        			chemistry
		                        			
		                        		
		                        	
5.Clinical value of an adenosine triphosphate-based chemotherapy response assay in resectable stage III colorectal cancer
Chan Dong KIM ; So Hyun KIM ; Sang Hoon JUNG ; Jae Hwang KIM
Annals of Surgical Treatment and Research 2019;97(2):93-102
		                        		
		                        			
		                        			PURPOSE: ATP-based chemotherapy response assay (ATP-CRA) is a well-documented and validated technology that can individualize chemotherapy. This study was undertaken to assess the usefulness of ATP-CRA in advanced colorectal cancer (CRC) patients receiving adjuvant chemotherapy. METHODS: A total of 136 patients with curative resection between January 2006 and April 2014 were evaluated using ATP-CRA. Patients received either the FOLFOX or Mayo clinic regimen chemotherapy following assay results. The sensitive-group (S-group) was defined as a drug-producing ≥ 40% reduction in ATP, and the resistant-group (R-group) as an ATP reduction of < 40%. These 2 groups were further subdivided to produce 4 subgroups: the FOLFOX sensitive subgroup (the FS subgroup [n = 65]), the Mayo sensitive subgroup (the MS subgroup [n = 40]), the FOLFOX resistant subgroup (the FR subgroup [n = 10]), and the Mayo resistant subgroup (the MR subgroup [n = 21]). Clinical responses and survival results were compared for both treatment regimens. RESULTS: The FS and MS subgroups showed a better disease-free survival rate (29% vs. 40%, 35% vs. 47.6%) and overall survival rate (92.3% vs. 80.0%, 87.5% vs. 76.2%) than FR and MR subgroups. The FS and MS subgroups showed a longer time to relapse (20.2 months vs. 9.5 months, 17.6 months vs. 16.4 months) than the FR and MR subgroups. CONCLUSION: ATP-CRA tailored-chemotherapy has the potential to provide a survival benefit in resectable advanced CRC.
		                        		
		                        		
		                        		
		                        			Adenosine Triphosphate
		                        			;
		                        		
		                        			Adenosine
		                        			;
		                        		
		                        			Chemotherapy, Adjuvant
		                        			;
		                        		
		                        			Colorectal Neoplasms
		                        			;
		                        		
		                        			Disease-Free Survival
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Drug Therapy
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Recurrence
		                        			;
		                        		
		                        			Survival Rate
		                        			
		                        		
		                        	
6.Synthesis and antitumor activity of podophyllotoxin derivatives.
Dan-Li TIAN ; Chun-Po LIANG ; Gang LUO ; Hong CHEN
China Journal of Chinese Materia Medica 2019;44(22):4874-4879
		                        		
		                        			
		                        			According to drug design flattening principle and using podophyllotoxin or 4'-demethylepipodophyllotoxin and aldehydes as starting material,a series of podophyllotoxin derivatives containing an imine structure with low toxicity were highly effective synthesized. Nine target compounds were successfully synthesized,and their structures were confirmed by ~1H-NMR,HR-ESI-MS and melting point data analysis. Using etoposide as positive control drug,nine target compounds were screened for cytotoxicity against He La cells in vitro by MTT method. The antitumor activity screening results showed that compound 6 b,6 d,6 e,6 f,6 g,6 i exhibited higher inhibitory rate against He La cells than those of control drug VP-16. It provides some practical reference value for the further development on the structure modification of podophyllotoxin and study on anti-tumor activity.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents/pharmacology*
		                        			;
		                        		
		                        			Drug Design
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Podophyllotoxin/pharmacology*
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			
		                        		
		                        	
7.Design, synthesis, and biological evaluation of novel nitric oxide releasing dehydroandrographolide derivatives.
Lin YAN ; Yu-Xuan DAI ; Guo-Long GU ; Miao-Bo PAN ; Shuai-Cong WU ; Yu CAO ; Wen-Long HUANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(10):782-790
		                        		
		                        			
		                        			A series of new hybrids of dehydroandrographolide (TAD), a biologically active natural product, bearing nitric oxide (NO)-releasing moieties were synthesized and designated as NO-donor dehydroandrographolide. The biological activities of target compounds were studied in human erythroleukemia K562 cells and breast cancer MCF-7 cells. Biological evaluation indicated that the most active compound I-5 produced high levels of NO and inhibited the proliferation of K562 (IC 1.55 μmol·L) and MCF-7 (IC 2.91 μmol·L) cells, which were more potent than the lead compound TAD and attenuated by an NO scavenger. In conclusion, I-5 is a novel hybrid with potent antitumor activity and may become a promising candidate for future intensive study.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			chemical synthesis
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Diterpenes
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drug Design
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			K562 Cells
		                        			;
		                        		
		                        			MCF-7 Cells
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			
		                        		
		                        	
8.Scopariusols L-T, nine new ent-kaurane diterpenoids isolated from Isodon scoparius.
Hua-Yi JIANG ; Xiao-Nian LI ; Han-Dong SUN ; Hong-Bin ZHANG ; Pema-Tenzin PUNO
Chinese Journal of Natural Medicines (English Ed.) 2018;16(6):456-464
		                        		
		                        			
		                        			Nine new ent-kaurane diterpenoids, named scopariusols L-T (1-9), were isolated from the aerial parts of Isodon scoparius. Their structures were characterized mainly by analyzing the NMR and HR-ESI-MS data, and the absolute configuration of 1 was determined by single-crystal X-ray diffraction. Compound 1 was active against five human tumor cell lines (HL-60, SMMC-7721, A-549, MCF-7, and SW-480), and it also inhibited NO production in LPS-stimulated RAW264.7 cells, with an IC value of 0.6 μmol·L.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antineoplastic Agents, Phytogenic
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Crystallography, X-Ray
		                        			;
		                        		
		                        			Diterpenes, Kaurane
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			HL-60 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Isodon
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Macrophages
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Molecular Structure
		                        			;
		                        		
		                        			Nitric Oxide
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			Nuclear Magnetic Resonance, Biomolecular
		                        			;
		                        		
		                        			Plant Components, Aerial
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			RAW 264.7 Cells
		                        			
		                        		
		                        	
9.Pirh2 mediates the sensitivity of myeloma cells to bortezomib via canonical NF-κB signaling pathway.
Li YANG ; Jing CHEN ; Xiaoyan HAN ; Enfan ZHANG ; Xi HUANG ; Xing GUO ; Qingxiao CHEN ; Wenjun WU ; Gaofeng ZHENG ; Donghua HE ; Yi ZHAO ; Yang YANG ; Jingsong HE ; Zhen CAI
Protein & Cell 2018;9(9):770-784
		                        		
		                        			
		                        			Clinical success of the proteasome inhibitor established bortezomib as one of the most effective drugs in treatment of multiple myeloma (MM). While survival benefit of bortezomib generated new treatment strategies, the primary and secondary resistance of MM cells to bortezomib remains a clinical concern. This study aimed to highlight the role of p53-induced RING-H2 (Pirh2) in the acquisition of bortezomib resistance in MM and to clarify the function and mechanism of action of Pirh2 in MM cell growth and resistance, thereby providing the basis for new therapeutic targets for MM. The proteasome inhibitor bortezomib has been established as one of the most effective drugs for treating MM. We demonstrated that bortezomib resistance in MM cells resulted from a reduction in Pirh2 protein levels. Pirh2 overexpression overcame bortezomib resistance and restored the sensitivity of myeloma cells to bortezomib, while a reduction in Pirh2 levels was correlated with bortezomib resistance. The levels of nuclear factor-kappaB (NF-κB) p65, pp65, pIKBa, and IKKa were higher in bortezomib-resistant cells than those in parental cells. Pirh2 overexpression reduced the levels of pIKBa and IKKa, while the knockdown of Pirh2 via short hairpin RNAs increased the expression of NF-κB p65, pIKBa, and IKKa. Therefore, Pirh2 suppressed the canonical NF-κB signaling pathway by inhibiting the phosphorylation and subsequent degradation of IKBa to overcome acquired bortezomib resistance in MM cells.
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Bortezomib
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			therapeutic use
		                        			;
		                        		
		                        			Cell Cycle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Dose-Response Relationship, Drug
		                        			;
		                        		
		                        			Drug Resistance, Neoplasm
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Multiple Myeloma
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Structure-Activity Relationship
		                        			;
		                        		
		                        			Ubiquitin-Protein Ligases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
10.Redirecting T cells to glypican-3 with 28.41BB.ζ and 28.ζ-41BBL CARs for hepatocellular carcinoma treatment.
Haili MA ; Siye CHEN ; Yan HE ; Jingwei HUANG ; Yanhong XU ; Chao WANG ; Cheng LEI ; Ting LU ; Shengdong XIAO ; Jinming MAO ; Yiyun XU ; Hao GUO ; Bohua LI ; Minghui ZHANG ; Xiaowen HE
Protein & Cell 2018;9(7):664-669
		                        		
		                        		
		                        		
		                        			Antineoplastic Agents
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Carcinoma, Hepatocellular
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Cytokines
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Drug Screening Assays, Antitumor
		                        			;
		                        		
		                        			Glypicans
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ligands
		                        			;
		                        		
		                        			Liver Neoplasms
		                        			;
		                        		
		                        			drug therapy
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail