1.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
		                        		
		                        			
		                        			ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis. 
		                        		
		                        		
		                        		
		                        	
2.Alleviation of Ulcerative Colitis by Shaoyaotang via Inhibiting Glycolysis Through SIRT6/HIF-1α Pathway
Yiling XIA ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Erle LIU ; Yiwen WANG ; Shaijin JIANG ; Yiqian YU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(11):10-19
		                        		
		                        			
		                        			ObjectiveTo investigate the role of silent information regulatory protein (SIRT6)/hypoxia-inducible factor-1α (HIF-1α) pathway in regulating the reprogramming of glucose metabolism in ulcerative colitis (UC) and the mechanism of intervention of Shaoyaotang. MethodsForty-eight c57bL/6 mice were randomly divided into a blank group, a model group, a Mesalazine group (0.42 g·kg-1), a Shaoyaotang group (31.08 g·kg-1), an inhibitor group (OSS-128167, 50 mg·kg-1), and an inhibitor + Shaoyaotang group (50 mg·kg-1 OSS-128167 + 31.08 g·kg-1 Shaoyaotang). A UC model was established by the administration of 2.5% dextran sulfate sodium (DSS) solution for mice in other groups for 7 d, except for the blank group. The mice in each group were treated with saline, Mesalazine, Shaoyaotang, inhibitor, and inhibitor + Shaoyaotang, respectively, for 7 d. The mice were necropsied 24 h after the last administration of the drug. The blood was collected from the orbital region, and colon tissue was taken. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in colon tissue. Enzyme-linked immunosorbent assay (ELISA) was employed to detect serum interleukin (IL)-10, IL-17, and IL-6 levels. A biochemical method was used to detect glucose and lactate dehydrogenase A (LDHA) levels. Immunohistochemistry (IHC) was employed to detect IL-22 and transforming growth factor-β1 (TGF-β1) levels in colon tissue, and Western blot and real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were used to detect relative protein and mRNA expressions of SIRT6, HIF-1α, and LDHA. ResultsCompared with those of the blank group, disease activity index (DAI) scores of mice in the model group and inhibitor group were significantly increased (P<0.01). The length of colon tissue was significantly shortened, and colon tissue was congested and eroded. The pathohistological scores were significantly increased (P<0.01). The levels of serum inflammatory factors IL-17 and IL-6 were significantly elevated, and the levels of IL-10 were significantly decreased (P<0.01). The protein expressions of IL-22 and TGF-β1 were significantly reduced in colon tissue (P<0.01). The relative protein and mRNA expressions of SIRT6 were significantly decreased (P<0.01), and the relative protein and mRNA expressions of HIF-1α and LDHA and the contents of glucose and lactate were significantly elevated (P<0.01). The level of inflammation in the colon of the mice in the inhibitor group was more severe than that in the model group (P<0.01). Compared with the model group, the Mesalazine group, the Shaoyaotang group, and the inhibitor + Shaoyaotang group showed reduced colonic injury, significant decrease in serum IL-17 and IL-6, significant increase in IL-10 (P<0.01), significant increase in the protein expressions of IL-22 and TGF-β1 in colon tissue (P<0.01), significant increase in the protein expressions of SIRT6 and the relative mRNA expressions (P<0.01), and significant reduction in the protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate (P<0.01). Compared with those in the Shaoyaotang group, the serum IL-17 and IL-6 were significantly increased, and IL-10 was significantly decreased in the inhibitor + Shaoyaotang group (P<0.01). The protein expressions of IL-22 and TGF-β1 in colon tissue were significantly decreased (P<0.01). The expressions of SIRT6 protein and the relative mRNA expressions were significantly decreased (P<0.01). The protein expressions of HIF-1α and LDHA, the relative mRNA expressions, and the contents of glucose and lactate were significantly elevated (P<0.01). However, the difference between the Shaoyaotang group and the Mesalazine group was not significant. ConclusionShaoyaotang can effectively treat DSS-induced mice with UC through the SIRT6/HIF-1α pathway, and its mechanism of action may be related to the regulation of the SIRT6/HIF-1α pathway and glucose metabolism reprogramming and the inhibition of glycolysis. 
		                        		
		                        		
		                        		
		                        	
3.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
		                        		
		                        			
		                        			ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis. 
		                        		
		                        		
		                        		
		                        	
4.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
		                        		
		                        			
		                        			ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang. 
		                        		
		                        		
		                        		
		                        	
5.Shaoyaotang Restores Th17/Treg Cell Balance by Regulating Glucose Metabolism Reprogramming in Treatment of Ulcerative Colitis
Yiwen WANG ; Yiling XIA ; Erle LIU ; Shaijin JIANG ; Bo ZOU ; Dongsheng WU ; Youwei XIAO ; Hui CAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):78-85
		                        		
		                        			
		                        			ObjectiveTo investigate the effect of Shaoyaotang on T helper cell 17/regulatory T lymphocyte(Th17/Treg) cell balance in ulcerative colitis and decipher the intervention mechanism based on glucose metabolism reprogramming. MethodsThe mouse model of ulcerative colitis was established by the dextran sulfate sodium (DSS) method. Forty-eight C57BL/6 mice were randomly allocated into normal, model, Western drug control (mesalazine, 0.39 g·kg-1·d-1), Shaoyaotang (15.54 g·kg-1·d-1), inhibitor (2-deoxy-D-glucose, 2-DG, 100 mg·kg-1·d-1), and inhibitor (2-DG, 100 mg·kg-1·d-1) + Shaoyaotang (15.54 g·kg-1·d-1) groups. Mice were administrated with the corresponding drugs by gavage for 7 days. The general conditions and the colon injury degree were observed 24 h after the last administration. The expression of interleukin (IL)-10 and IL-17 in the colon tissue was detected by immunohistochemical staining. Western blot and Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) were performed to determine the protein and mRNA levels, respectively, of hypoxia-inducing factor-1α (HIF-1α), lactate dehydrogenase (LDHA), and hexokinase 2 (HK2) in the colon tissue. Th17/Treg cell differentiation was detected by flow cytometry. Enzyme-linked immunosorbent assay was employed to measure the levels of lactic acid and glucose in the colon tissue and IL-10, IL-17, and IL-6 in the serum. ResultsCompared with the normal group, the model group showed decreases in body weight and disease activity index (DAI) (P<0.05), elevations in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and declines in the levels of of IL-10 and Treg cells (P<0.05). Compared with the model group, the drug administration groups showed increases in body weight and DAI (P<0.05), declines in levels of HIF-1α, LDHA, HK2, IL-17, IL-6, Th17 cells, lactic acid, and glucose in the colon tissue (P<0.05), and rises in levels of IL-10 and Treg cells (P<0.05). Shaoyaotang+2-DG group had the most obvious effect. ConclusionShaoyaotang can relieve diarrhea and bloody stool in mice with ulcerative colitis by restoring the Th17/Treg cell balance via regulation of glucose metabolism reprogramming, thus playing a role in the treatment of ulcerative colitis. 
		                        		
		                        		
		                        		
		                        	
6.Shaoyaotang Regulates Glucose Metabolism Reprogramming to Inhibit Macrophage Polarization Toward M1 Phenotype
Shaijin JIANG ; Hui CAO ; Dongsheng WU ; Bo ZOU ; Yiwen WANG ; Yiling XIA ; Erle LIU ; Qi CHENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):86-93
		                        		
		                        			
		                        			ObjectiveTo explore the regulation of Shaoyaotang on glucose metabolism reprogramming of macrophages and the mechanism of this decoction in inhibiting macrophage polarization toward the M1 phenotype. MethodsHuman monocytic leukemia-1 (THP-1) cells were treated with 100 ng·L-1 phorbol myristate acetate for induction of macrophages as the normal control group. The cells treated with 100 ng·L-1 lipopolysaccharide combined with 20 ng·L-1 interferon (IFN)-γ for induction of M1-type macrophages were taken as the M1 model group. M1-type macrophages were treated with the blank serum, Shaoyaotang-containing serum, 0.5 mol·L-1 2-deoxy-D-glucose (2-DG), and Shaoyaotang-containing serum + 2-DG, respectively. After intervention, the expression of CD86 and CD206 was examined by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were assessed by ELISA. Real-time PCR and Western blot were employed to determine the mRNA and protein levels, respectively, of hypoxia-inducible factor-1 alpha (HIF-1α), glucose transporter 1 (GLUT1), hexokinase 2 (HK2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). ResultsCompared with that in the normal control group, the expression of CD86, the marker of M1-type macrophages, increased in the M1 model group and blank serum group (P<0.01), which indicated that the M1 inflammatory model was established successfully. In addition, the M1 model group was observed with up-regulated mRNA and protein levels of proinflammatory cytokines IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 (P<0.01). Compared with the M1 model group, the Shaoyaotang-containing serum, 2-DG, and combined intervention groups showed decreased expression of CD86 (P<0.01), down-regulated mRNA and protein levels of proinflammatory factors IL-6 and TNF-α and glycolysis-related factors HIF-1α, GLUT1, HK2, GAPDH, and PFKFB3 produced by M1-type macrophages (P<0.01), increased expression of CD206 (marker of M2-type macrophages) (P<0.01), and elevated levels of IL-10 and TGF-β produced by M2-type macrophages (P<0.01). ConclusionShaoyaotang inhibits macrophage differentiation toward pro-inflammatory M1-type macrophages and promotes the differentiation toward anti-inflammatory M2-type macrophages by regulating glucose metabolism reprogramming. The evidence gives insights into new molecular mechanisms and targets for the treatment of ulcerative colitis with Shaoyaotang. 
		                        		
		                        		
		                        		
		                        	
7.Discussion of Hp(3) calibration with two thermoluminescent dosimeters in the same standard X-ray RQR radiation field
Wenyan LI ; Guiying ZHANG ; Lantao LIU ; Dongsheng NIU ; Zeqin GUO ; Zhichao WANG ; Hua TUO ; Heyan WU ; Tingting XIA ; Nini CHU ; Jichuan LAI ; Jiaojiao CHEN
Chinese Journal of Radiological Health 2024;33(3):318-322
		                        		
		                        			
		                        			Objective To compare Hp(3) calibration with a homemade (A) thermoluminescent dosimeter (TLD) and an imported (B) TLD in a standard X-ray RQR radiation field, to explore the different responses of A and B, and to provide foundation for the calibration of Hp(3). Methods A column mode was selected. Hp(3) calibration was performed using A and B in a standard X-ray RQR radiation field in the Secondary Standard Dosimetry Laboratory, National Institute for Radiological Protection, China Center for Disease Control and Prevention. Angle response, energy response, and linear response were calibrated with RQR4 (60 kV), RQR7 (90 kV), and RQR9 (120 kV), respectively. Results In terms of angle response, the calibration results of A were relatively high, while the calibration results of B were relatively low. In terms of energy response, the calibration results showed a similar pattern to angle response. In terms of linear response, the calibration results of both A and B were satisfactory. Conclusion Both A and B can be used for normal calibration of Hp(3) in a standard X-ray RQR radiation field. However, in actual monitoring, attention should be paid to the energy and angle response values of TLDs.
		                        		
		                        		
		                        		
		                        	
8.Chinese expert consensus on diagnosis, treatment and prevention of venous thrombus embolism associated with chest trauma (2022 version)
Kaibin LIU ; Yi YANG ; Hui LI ; Yonten TSRING ; Zhiming CHEN ; Hao CHEN ; Xinglong FAN ; Congrong GAO ; Chundong GU ; Yutong GU ; Guangwei GUO ; Zhanlin GUO ; Jian HU ; Ping HU ; Hai HUANG ; Lijun HUANG ; Weiwei HE ; Longyu JIN ; Baoli JING ; Zhigang LIANG ; Feng LIN ; Wenpan LIU ; Danqing LI ; Xiaoliang LI ; Zhenyu LI ; Haitao MA ; Guibin QIAO ; Zheng RUAN ; Gang SUI ; Dongbin WANG ; Mingsong WANG ; Lei XUE ; Fei XIA ; Enwu XU ; Quan XU ; Jun YI ; Yunfeng YI ; Jianguo ZHANG ; Dongsheng ZHANG ; Qiang ZHANG ; Zhiming ZHOU ; Zhiqiang ZOU
Chinese Journal of Trauma 2022;38(7):581-591
		                        		
		                        			
		                        			Chest trauma is one of the most common injuries. Venous thromboembolism (VTE) as a common complication of chest trauma seriously affects the quality of patients′ life and even leads to death. Although there are some consensus and guidelines on the prevention and treatment of VTE at home and abroad, the current literatures lack specificity considering the diagnosis, treatment and prevention of VTE in patients with chest trauma have their own characteristics, especially for those with blunt trauma. Accordingly, China Chest Injury Research Society and editorial board of Chinese Journal of Traumatology organized relevant domestic experts to jointly formulate the Chinese expert consensus on the diagnosis, treatment and prevention of chest trauma venous thromboembolism associated with chest trauma (2022 version). This consensus provides expert recommendations of different levels as academic guidance in terms of the characteristics, clinical manifestations, risk assessment, diagnosis, treatment, and prevention of chest trauma-related VTE, so as to offer a reference for clinical application.
		                        		
		                        		
		                        		
		                        	
9.Effect of enteral nutrition support on hematological complications in children with malignant solid tumor during chemotherapy
Fan LI ; Weiling ZHANG ; Weishan REN ; Xia ZHU ; Huimin HU ; Tian ZHI ; Yi ZHANG ; Dongsheng HUANG
Chinese Journal of General Practitioners 2022;21(2):154-160
		                        		
		                        			
		                        			Objective:To investigate the effect of enteral nutrition on hematological complications in children with malignant solid tumors during chemotherapy.Methods:A total of 103 children with malignant solid tumor admitted to our hospital from March 2020 to December 2020 were enrolled in the study. The children were randomly divided into enteral nutrition group ( n=51) and control group ( n=52). Children in enteral nutrition group were given enteral nutrition support on the basis of routine diet, while children in control group were only given routine diet. The levels of leukocytes, neutrophils, hemoglobin and platelets in peripheral blood of children during chemotherapy were analyzed. The incidence of infection and the transfusion of red blood cells and platelets after chemotherapy were documented and compared between two groups. Results:The levels of white blood cells, neutrophils, hemoglobin and platelets before chemotherapy were significantly higher than those after chemotherapy both in enteral nutrition group ( Z=-5.91, -5.59, -5.54, -5.66, all P<0.05) and in control group ( Z=-6.14, -5.84, -5.75, -4.75, all P<0.05). The overall hemoglobin levels in enteral nutrition group before and after chemotherapy was significantly higher than those in control group ( t=5.68, 5.62, P<0.05), and there were no significant differences in the levels of white blood cells, neutrophils and platelets between the two groups before chemotherapy ( Z=-0.71, -0.12, -1.29, all P>0.05) and after chemotherapy ( Z=-0.39, -0.86, -0.94, all P>0.05). Compared with the control group, the degree of anemia during chemotherapy was significantly improved in enteral nutrition group (χ2=10.45,6.12, all P<0.05), but there was no significant difference in the reduction degree of white blood cells, neutrophils and platelets between the two groups (before chemotherapy: χ2=1.17, 0.10, 0.49; after chemotherapy: χ2=0.18, 1.10, 0.97, all P>0.05). The number of children receiving red blood cell transfusion in enteral nutrition group was significantly lower than that in control group (χ2=14.06, P<0.05), and there was no significant difference in the number of children with infection and platelet transfusion between the two groups (χ2=1.20, 0.29, all P>0.05).There was no significant difference in the duration of neutrophil deficiency between enteral nutrition group and control group ( t=-1.75, P>0.05). Conclusion:Enteral nutrition support can significantly improve the hemoglobin level in children during chemotherapy, effectively alleviate the severity of anemia, and reduce the incidence of red blood cell transfusion after chemotherapy, which has high clinical application value.
		                        		
		                        		
		                        		
		                        	
10.Anticarin-β shows a promising anti-osteosarcoma effect by specifically inhibiting CCT4 to impair proteostasis.
Gan WANG ; Min ZHANG ; Ping MENG ; Chengbo LONG ; Xiaodong LUO ; Xingwei YANG ; Yunfei WANG ; Zhiye ZHANG ; James MWANGI ; Peter Muiruri KAMAU ; Zhi DAI ; Zunfu KE ; Yi ZHANG ; Wenlin CHEN ; Xudong ZHAO ; Fei GE ; Qiumin LV ; Mingqiang RONG ; Dongsheng LI ; Yang JIN ; Xia SHENG ; Ren LAI
Acta Pharmaceutica Sinica B 2022;12(5):2268-2279
		                        		
		                        			
		                        			Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex (TRiC) contains eight paralogous subunits (CCT1-8), and assists the folding of as many as 10% of cytosolic proteome. TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma, and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-β that can specifically bind to and inhibit CCT4. Anticarin-β shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-β potently impedes CCT4-mediated STAT3 maturation. Anticarin-β displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma. Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail