1.Correlation of serum leucine-rich α-2 glycoprotein 1 and fibroblast growth factor 21 levels with neovascular glaucoma
Zhong LUO ; He ZHOU ; Yi HUANG ; Wanjiang DONG
International Eye Science 2025;25(1):118-121
AIM: To investigate the correlation of serum leucine-rich α-2 glycoprotein 1(LRG1)and fibroblast growth factor 21(FGF-21)levels with neovascular glaucoma(NVG).METHODS: A total of 110 cases(110 eyes)with NVG admitted to the ophthalmology department from September 2020 to September 2022 were selected as NVG group, with 23 cases of grade II, 44 cases of grade III, and 43 cases of grade IV, while 90 sex and age matched cataract patients(90 eyes)were selected as control group. The levels of LRG1, FGF-21, vascular endothelial growth factor(VEGF), pigment epithelium-derived factor(PEDF), and tumor necrosis factor-α(TNF-α)in serum were detected by ELISA; Pearson correlation analysis was used to analyze the correlation of serum LRG1 and FGF-21 levels with Teich grade, VEGF, PEDF and TNF-α levels.RESULTS: The levels of serum LRG1, FGF-21, VEGF, PEDF and TNF-α in the NVG group were significantly higher than those in the control group(all P<0.01). With the increase of Teich grading, the levels of serum LRG1, FGF-21, VEGF, PEDF and TNF-α in NVG patients significantly increased in turn(all P<0.05). Correlation analysis showed that the levels of LRG1 and FGF-21 in serum of NVG patients were positively correlated with the levels of VEGF, PEDF and TNF-α(all P<0.05).CONCLUSION: The levels of LRG1 and FGF-21 in serum of patients with NVG are obviously increased, which are positively correlated with the levels of VEGF, PEDF and TNF-α, both of which may be related to the development of NVG.
2.Technological development frontier and future trend of cardiovascular surgery
Xiaoke SHANG ; Changdong ZHANG ; Yucheng ZHONG ; Nianguo DONG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):41-53
In recent years, the field of cardiovascular surgery has undergone revolutionary changes and made rapid progress in various aspects, bringing more hope and possibilities for the health and well-being of patients. The constant emergence of new technologies brings new opportunities and hope, as well as constant challenges to past concepts. This article aims to provide a comprehensive overview of the latest developments in cardiovascular surgery in recent years, especially since 2023. It introduces cutting-edge knowledge and technologies in the field of cardiovascular surgery, including lifelong management of aortic valve disease, artificial valves, mitral valves, treatment options for hypertrophic obstructive cardiomyopathy, heart transplantation, left ventricular assist, coronary artery surgery, cardiac structural interventions for chronic heart failure, aortic dissection, and comprehensive surgical treatment of atrial fibrillation. It also analyzes and explores future development directions in depth, aiming to provide useful references and inspiration for cardiovascular doctors and jointly promote the continuous progress of cardiovascular surgery in China.
3.Applications of EEG Biomarkers in The Assessment of Disorders of Consciousness
Zhong-Peng WANG ; Jia LIU ; Long CHEN ; Min-Peng XU ; Dong MING
Progress in Biochemistry and Biophysics 2025;52(4):899-914
Disorders of consciousness (DOC) are pathological conditions characterized by severely suppressed brain function and the persistent interruption or loss of consciousness. Accurate diagnosis and evaluation of DOC are prerequisites for precise treatment. Traditional assessment methods are primarily based on behavioral scales, which are inherently subjective and rely on observable behaviors. Moreover, traditional methods have a high misdiagnosis rate, particularly in distinguishing minimally conscious state (MCS) from vegetative state/unresponsive wakefulness syndrome (VS/UWS). This diagnostic uncertainty has driven the exploration of objective, reliable, and efficient assessment tools. Among these tools, electroencephalography (EEG) has garnered significant attention for its non-invasive nature, portability, and ability to capture real-time neurodynamics. This paper systematically reviews the application of EEG biomarkers in DOC assessment. These biomarkers are categorized into 3 main types: resting-state EEG features, task-related EEG features, and features derived from transcranial magnetic stimulation-EEG (TMS-EEG). Resting-state EEG biomarkers include features based on spectrum, microstates, nonlinear dynamics, and brain network metrics. These biomarkers provide baseline representations of brain activity in DOC patients. Studies have shown their ability to distinguish different levels of consciousness and predict clinical outcomes. However, because they are not task-specific, they are challenging to directly associate with specific brain functions or cognitive processes. Strengthening the correlation between resting-state EEG features and consciousness-related networks could offer more direct evidence for the pathophysiological mechanisms of DOC. Task-related EEG features include event-related potentials, event-related spectral modulations, and phase-related features. These features reveal the brain’s responses to external stimuli and provide dynamic information about residual cognitive functions, reflecting neurophysiological changes associated with specific cognitive, sensory, or behavioral tasks. Although these biomarkers demonstrate substantial value, their effectiveness rely on patient cooperation and task design. Developing experimental paradigms that are more effective at eliciting specific EEG features or creating composite paradigms capable of simultaneously inducing multiple features may more effectively capture the brain activity characteristics of DOC patients, thereby supporting clinical applications. TMS-EEG is a technique for probing the neurodynamics within thalamocortical networks without involving sensory, motor, or cognitive functions. Parameters such as the perturbational complexity index (PCI) have been proposed as reliable indicators of consciousness, providing objective quantification of cortical dynamics. However, despite its high sensitivity and objectivity compared to traditional EEG methods, TMS-EEG is constrained by physiological artifacts, operational complexity, and variability in stimulation parameters and targets across individuals. Future research should aim to standardize experimental protocols, optimize stimulation parameters, and develop automated analysis techniques to improve the feasibility of TMS-EEG in clinical applications. Our analysis suggests that no single EEG biomarker currently achieves an ideal balance between accuracy, robustness, and generalizability. Progress is constrained by inconsistencies in analysis methods, parameter settings, and experimental conditions. Additionally, the heterogeneity of DOC etiologies and dynamic changes in brain function add to the complexity of assessment. Future research should focus on the standardization of EEG biomarker research, integrating features from resting-state, task-related, and TMS-EEG paradigms to construct multimodal diagnostic models that enhance evaluation efficiency and accuracy. Multimodal data integration (e.g., combining EEG with functional near-infrared spectroscopy) and advancements in source localization algorithms can further improve the spatial precision of biomarkers. Leveraging machine learning and artificial intelligence technologies to develop intelligent diagnostic tools will accelerate the clinical adoption of EEG biomarkers in DOC diagnosis and prognosis, allowing for more precise evaluations of consciousness states and personalized treatment strategies.
4.Emergency medical response strategy for the 2025 Dingri, Tibet Earthquake
Chenggong HU ; Xiaoyang DONG ; Hai HU ; Hui YAN ; Yaowen JIANG ; Qian HE ; Chang ZOU ; Si ZHANG ; Wei DONG ; Yan LIU ; Huanhuan ZHONG ; Ji DE ; Duoji MIMA ; Jin YANG ; Qiongda DAWA ; Lü ; JI ; La ZHA ; Qiongda JIBA ; Lunxu LIU ; Lei CHEN ; Dong WU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):421-426
This paper systematically summarizes the practical experience of the 2025 Dingri earthquake emergency medical rescue in Tibet. It analyzes the requirements for earthquake medical rescue under conditions of high-altitude hypoxia, low temperature, and low air pressure. The paper provides a detailed discussion on the strategic layout of earthquake medical rescue at the national level, local government level, and through social participation. It covers the construction of rescue organizational systems, technical systems, material support systems, and information systems. The importance of building rescue teams is emphasized. In high-altitude and cold conditions, rapid response, scientific decision-making, and multi-party collaboration are identified as key elements to enhance rescue efficiency. By optimizing rescue organizational structures, strengthening the development of new equipment, and promoting telemedicine technologies, the precision and effectiveness of medical rescue can be significantly improved, providing important references for future similar disaster rescues.
5.2024 annual report of interventional treatment for congenital heart disease
Changdong ZHANG ; Yucheng ZHONG ; Geng LI ; Jun TIAN ; Gejun ZHANG ; Nianguo DONG ; Yuan FENG ; Daxin ZHOU ; Yongjian WU ; Lianglong CHEN ; Xiaoke SHANG
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(07):909-918
In recent years, with the continuous development and increasing maturity of interventional techniques, interventional treatment for congenital heart disease (CHD) has been progressively disseminated to county- and city-level hospitals in China. Concurrently, the standardized management of adult CHD (particularly patent foramen ovale) and the lifelong management of complex CHD are gaining increasing clinical attention, while the emergence of new techniques and products continuously advances the discipline. This article aims to review the new progress made in the field of interventional treatment for congenital heart disease in China during 2024. It specifically reviews and analyzes the following key aspects: (1) annual statistics on interventional closure procedures for CHD; (2) recent insights into patent foramen ovale closure; (3) advances in transcatheter pulmonary valve replacement; (4) interventional treatment and lifelong management strategies for complex CHD; (5) new interventional techniques for acquired heart disease; and (6) the application of artificial intelligence in CHD management. Through the synthesis and discussion of these topics, this article seeks to provide a detailed analysis of the current landscape of interventional treatment for CHD in China and project its future development trends.
6.Latest research progress in airway stenosis after lung transplantation
Yujie ZUO ; Menggen LIU ; Jiaxin WAN ; Yuxuan CHEN ; Wenlong HU ; Junjie ZHANG ; Yuyang MAO ; Jing CHEN ; Ailing ZHONG ; Lingzhi SHI ; Bo WU ; Chunrong JU ; Dong TIAN
Organ Transplantation 2024;15(3):474-478
With the optimization of surgical technologies and postoperative management regimens, the number of lung transplantation has been significantly increased, which has become an important treatment for patients with end-stage lung disease. However, due to the impact of comprehensive factors, such as bronchial ischemia and immunosuppression, the incidence of airway stenosis after lung transplantation is relatively high, which severely affects postoperative survival and quality of life of lung transplant recipients. In recent years, with the improvement of perioperative management, organ preservation and surgical technologies, the incidence of airway stenosis after lung transplantation has been declined, but it remains at a high level. Early diagnosis and timely intervention play a significant role in enhancing clinical prognosis of patients with airway stenosis. In this article, the general conditions, diagnosis, treatment and prevention of airway stenosis after lung transplantation were reviewed, aiming to provide reference for comprehensive management of airway stenosis after lung transplantation and improving clinical prognosis of lung transplant recipients.
7.Application of finite element analysis in lumbar biomechanics
Guangya FAN ; Wenshuo SU ; Musen ZHONG ; Liqiang DONG
Chinese Journal of Tissue Engineering Research 2024;28(30):4896-4901
BACKGROUND:Finite element analysis is a commonly used mathematical modeling method to analyze the biomechanics of the lumbar spine.By constructing finite element models of the complex tissues such as muscles,blood vessels,and nerves in the lumbar region,mechanical analysis is performed to elucidate the pathogenesis of lumbar spine disorders and the mechanical mechanisms of treatment approaches. OBJECTIVE:To review the progress of finite element analysis in understanding the pathogenesis and treatment modalities of lumbar spine disorders,and to propose a new clinical workflow for the implementation of finite element analysis,aiming to provide a reference for future studies and promote the widespread utilization of finite element analysis in clinical diagnosis and treatment. METHODS:The PubMed database was searched using English keywords"finite element analysis,lumbar vertebra",while the WanFang and China National Knowledge Infrastructure(CNKI)databases were searched using Chinese keywords"finite element analysis,lumbar vertebra".A total of 73 articles were included for review. RESULTS AND CONCLUSION:(1)Lumbar spine degeneration in non-slipped patients typically originates from the posterior annulus fibrosus,while in patients with lumbar spine spondylolisthesis,degeneration starts from the lumbar facet joints due to abnormal mechanical mechanisms.(2)Restoring vertebral body height can prevent adjacent-level degeneration,and finite element analysis-measured vertebral compression strength can serve as an effective predictor of fracture risk,replacing bone density measurements.(3)In lumbar spine fusion surgery,selecting fusion devices of appropriate height and placing them transversely can prevent device subsidence.Increased intervertebral strain,circumferential stress,and intervertebral pressure in adjacent segments after fusion surgery may contribute to the occurrence of degenerative changes in neighboring segments.(4)Finite element analysis results suggest that preoperative planning for transforaminal endoscopic surgery should include considerations for osteotomy size to avoid excessive destruction of the articular process,and intraoperatively,preferential selection of a technique that traverses the superior articular process for foraminal dilatation.(5)In percutaneous kyphoplasty,bilateral pedicle screw augmentation should be performed,distributing bone cement on both sides of the pedicle.More advanced non-aluminum glass polyalkenoate cement materials should be selected.(6)Traction therapy should be personalized based on individual patient characteristics,including customized traction angles and forces,to achieve optimal therapeutic effects.(7)Manual therapy can induce relative displacement between the herniated intervertebral disc and the nerve root,thereby reducing compression.(8)The workflow involving CT/MR-AI Plus FEA-AI Plus Surgical robots can enable more precise diagnosis and treatment.
8.Effects of icariin-astragaloside IV-puerarin mixture on cognitive function and ferroptosis amino acid metabolism pathway in APP/PS1 HAMP-/-mice
Shan LIU ; Xiaoping HE ; Yan ZHAO ; Jianmin ZHONG ; Yehua ZHANG ; Yiming LIU ; Jiaxuan LI ; Xianhui DONG
Chinese Journal of Pathophysiology 2024;40(3):502-510
AIM:To observe the effect of icariin-astragaloside Ⅳ-puerarin mixture(Yin-Huang-Ge mixture,YHG)on cognitive function and ferroptosis amino acid metabolism pathway in hepcidin(HAMP)knockout APPswe/PS1dE9(APP/PS1 HAMP-/-)mice.METHODS:The mice were divided into 7 groups:negative control(C57BL/6 mice)group,APP/PS1 group,APP/PS1 HAMP-/-group,APP/PS1+YHG group,APP/PS1 HAMP-/-+YHG group,APP/PS1+de-ferasirox(DFX)group,and APP/PS1 HAMP-/-+DFX group,with 6 mice in each group.The YHG and DFX were adminis-tered intragastrically,while the mice in C57 group,APP/PS1 group and APP/PS1 HAMP-/-group were given intragastric administration of distilled water,once a day for 2 months.The iron content in mouse brain tissues was detected by tissue iron kit.The morphological changes of the mitochondria in hippocampal neurons were observed by transmission electron microscopy.Morris water maze was used to detect the learning and memory ability of the mice.The content of neuronal nu-clear antigen(NeuN)in mouse brain tissues was detected by immunofluorescence staining.The expression of glutathione(GSH)in mouse brain tissues was detected by biochemical kit.The expression levels of glutamate-cysteine ligase catalytic subunit(GCLC)and glutamatase 2(GLS2)in mouse brain tissues were detected by Western blot.RESULTS:Compared with C57BL/6 mice,the brain iron content of APP/PS1 mice was significantly increased(P<0.01),the mitochondria were seriously damaged,the learning and memory ability was significantly decreased(P<0.05),the brain neurons were seri-ously damaged(P<0.01),and the expression levels of GSH,GCLC and GLS2 were significantly decreased(P<0.01).Compared with APP/PS1 mice,the brain iron content of APP/PS1 HAMP-/-mice was significantly increased(P<0.01),the mitochondria were seriously damaged,the learning and memory ability was significantly decreased(P<0.05),the brain neurons were seriously damaged(P<0.01),and the expression levels of GSH,GCLC and GLS2 were significantly decreased(P<0.05).After treatment with YHG and DFX,the brain iron content was significantly decreased(P<0.01),the mitochondrial damage was alleviated,the learning and memory ability was significantly increased(P<0.05),the brain neuron damage was alleviated(P<0.01),and the expression levels of GSH,GCLC and GLS2 were significantly increased(P<0.05).CONCLUSION:The YHG can improve the cognitive function of APP/PS1 HAMP-/-mice,and its mechanism may be related to the regulation of ferroptosis amino acid metabolism and the enhancement of antioxidant capacity.
9.Mechanism of Buyang Huanwu decoction in the treatment of spinal cord injury based on network pharmacology
Musen ZHONG ; Zhongcheng AN ; Guangya FAN ; Jiqian BAO ; Wenshuo SU ; Liqiang DONG
China Modern Doctor 2024;62(1):63-69
Objective To verify the mechanism of Buyang Huanwu decoction in the treatment of spinal cord injury based on network pharmacology and molecular docking.Methods The active ingredients and targets of Buyang Huanwu decoction were screened out by TCMSP,SymMap,PubChem and Swiss Target Prediction databases.Spinal cord injury targets were retrieved from OMIM,GeneCards,TTD,and DrugBank databases.Through venny software,the intersection target of Buyang Huanwu decoction and spinal cord injury was obtained.The active ingredient-target network for the treatment of spinal cord injury was constructed with Cytoscape software.Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis of common targets were carried out by DAVID,and the binding ability of drugs and targets was analyzed by molecular docking technology.Results A total of 106 active ingredients and 225 targets of Buyang Huanwu decoction,1315 targets of spinal cord injury and 112 targets of drug-disease intersection were obtained.The active ingredients of Buyang Huanwu decoction were quercetin,kaempferol,ellagic acid,luteolin and hederagenin in the treatment of spinal cord injury.Conclusion Buyang Huanwu decoction can achieve the purpose of treating spinal cord injury through various signal pathways.
10.A Method for Developing Implementation Strategies to Address Implementation Barriers: the CFIR-ERIC Matching Tool
Wanqing HUANG ; Dongmei ZHONG ; Siyuan LIU ; Yunyun XIE ; Jiangyun CHEN ; Dong XU
Medical Journal of Peking Union Medical College Hospital 2024;15(5):1182-1191
Implementation strategies are targeted interventions aimed at promoting the adoption, implementation, and sustainment of research findings or evidence-based practices in routine healthcare. If implementation strategies can precisely match implementation barriers and facilitators, the likelihood of successful implementation will increase. The CFIR-ERIC matching tool, which can match corresponding ERIC implementation strategies based on CFIR barriers, is a convenient and direct tool for developing implementation strategies. This paper provides a detailed overview of the origins and development of the CFIR-ERIC matching tool, outlines its contents and usage, and illustrates how to apply the tool to develop implementation strategies by using a brief smoking cessation intervention project as an example. The paper also discusses the advantages and limitations of using this tool for developing implementation strategies, with the aim of providing methodological reference for other researchers.

Result Analysis
Print
Save
E-mail