1.Genomic variant surveillance of SARS-CoV-2 positive specimens using a direct PCR product sequencing surveillance (DPPSS) method.
Nicole Ann L. TUBERON ; Francisco M. HERALDE III ; Catherine C. REPORTOSO ; Arturo L. GAITANO III ; Wilmar Jun O. ELOPRE ; Kim Claudette J. FERNANDEZ
Acta Medica Philippina 2025;59(Early Access 2025):1-12
BACKGROUND AND OBJECTIVE
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as the causative agent of COVID-19 has significantly challenged the public health landscape in late 2019. After almost 3 years of the first ever SARS-CoV-2 case, the World Health Organization (WHO) declared the end of this global health emergency in May 2023. Although, despite the subsequent drop of COVID-19 cases, the SARS-CoV-2 infection still exhibited multiple waves of infection, primarily attributed to the appearance of new variants. Five of these variants have been classified as Variants of Concern (VOC): Alpha, Beta, Gamma, Delta, and the most recent, Omicron. Therefore, the development of methods for the timely and accurate detection of viral variants remains fundamental, ensuring an ongoing and effective response to the disease. This study aims to evaluate the feasibility of the application of an in-house approach in genomic surveillance for the detection of SARS-CoV-2 variants using in silico designed primers.
METHODSThe primers used for the study were particularly designed based on conserved regions of certain genes in the virus, targeting distinct mutations found in known variants of SARS-CoV-2. Viral RNA extracts from nasopharyngeal samples (n=14) were subjected to quantitative and qualitative tests (Nanodrop and AGE). Selected samples were then analyzed by RT-PCR and amplicons were submitted for sequencing. Sequence alignment analysis was carried out to identify the prevailing COVID-19 variant present in the sample population.
RESULTSThe study findings demonstrated that the in-house method was able to successfully amplify conserved sequences (spike, envelope, membrane, ORF1ab) and enabled identification of the circulating SARS-CoV-2 variant among the samples. Majority of the samples were identified as Omicron variant. Three out of four designed primers effectively bound into the conserved sequence of target genes present in the sample, revealing the specific SARSCoV-2 variant. The detected mutations characterized for Omicron found in the identified lineages included K417N, S477N, and P681H which were also identified as mutations of interest. Furthermore, identification of the B.1.448 lineage which was not classified in any known variant also provided the potential of the developed in-house method in detecting unknown variants of COVID-19.
CONCLUSIONAmong the five VOCs, Omicron is the most prevalent and dominant variant. The in-house direct PCR product sequencing surveillance (DPPSS) method provided an alternative platform for SAR-CoV-2 variant analysis which is accessible and affordable than the conventional diagnostic surveillance methods and the whole genome sequencing. Further evaluation and improvements on the oligonucleotide primers may offer significant contribution to the development of a specific and direct PCRbased detection of new emerging COVID-19 variants.
Sars-cov-2 ; Polymerase Chain Reaction ; Dna Primers ; Oligonucleotide Primers
2.RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification.
Xiaochen WANG ; Rongsong LING ; Yurong PENG ; Weiqiong QIU ; Demeng CHEN
International Journal of Oral Science 2024;16(1):6-6
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Humans
;
DNA-Binding Proteins
;
Head and Neck Neoplasms/genetics*
;
N-Terminal Acetyltransferases
;
RNA, Transfer
;
Serine
;
Signal Transduction
;
Squamous Cell Carcinoma of Head and Neck
3.Innovative insights into extrachromosomal circular DNAs in gynecologic tumors and reproduction.
Ning WU ; Ling WEI ; Zhipeng ZHU ; Qiang LIU ; Kailong LI ; Fengbiao MAO ; Jie QIAO ; Xiaolu ZHAO
Protein & Cell 2024;15(1):6-20
Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.
Male
;
Female
;
Animals
;
Humans
;
Swine
;
DNA, Circular/genetics*
;
Genital Neoplasms, Female
;
Semen
;
DNA
;
Reproduction
5.Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'.
Xiaotian QIN ; Mengge GUO ; Shaohua QIN ; Ruidan CHEN
Chinese Journal of Biotechnology 2024;40(1):239-251
'Zhizhang Guhong Chongcui' is a new cultivar of Prunus mume with cross-cultivar group characteristics. It has typical characteristics of cinnabar purple cultivar group and green calyx cultivar group. It has green calyx, white flower, and light purple xylem, but the mechanism remains unclear. In order to clarify the causes of its cross-cultivar group traits, the color phenotype, anthocyanin content and the expression levels of genes related to anthocyanin synthesis pathway of 'Zhizhang Guhong Chongcui', 'Yuxi Zhusha' and 'Yuxi Bian Lü'e' were determined. It was found that the red degree of petals, sepals and fresh xylem in branches was positively correlated with the total anthocyanin content. MYBɑ1, MYB1, and bHLH3 were the key transcription factor genes that affected the redness of the three cultivars of flowers and xylem. The transcription factors further promoted the high expression of structural genes F3'H, DFR, ANS and UFGT, thereby promoting the production of red traits. Combined with phenotype, anthocyanin content and qRT-PCR results, it was speculated that the white color of petals of 'Zhizhang Guhong Chongcui' were derived from the high expression of FLS, F3'5'H, LAR and ANR genes in other branches of cyanidin synthesis pathway, and the low expression of GST gene. The green color of sepals might be originated from the relatively low expression of F3'H, DFR and ANS genes. The red color of xylem might be derived from the high expression of ANS and UFGT genes. This study made a preliminary explanation for the characteristics of the cross-cultivar group of 'Zhizhang Guhong Chongcui', and provided a reference for molecular breeding of flower color and xylem color of Prunus mume.
Animals
;
Anthocyanins
;
DNA Shuffling
;
Flowers/genetics*
;
Porifera
;
Prunus/genetics*
;
Glutamine/analogs & derivatives*
;
Plant Extracts
7.Effects of auricular thumbtack needle on lactation function and TDP-43/Btn1A1/XDH pathway in primiparous women with cesarean section.
Qiu-Ping LIN ; Jin-Bang XU ; Juan YANG ; Li ZHANG ; Jie LIN ; Xiu-Mi YOU ; Jun-Xin ZHANG ; Xiu-Min JIANG
Chinese Acupuncture & Moxibustion 2023;43(7):771-775
OBJECTIVE:
To observe the effects of auricular thumbtack needle on breast feeding and lactation function in primiparous women with cesarean section, and to explore its mechanism of action from the perspective of lactation-related gene expression.
METHODS:
One hundred cases of primiparous women with cesarean section were randomly divided into an observation group (50 cases, 3 cases dropped off) and a control group (50 cases, 2 cases were eliminated). The patients in the control group were treated with routine obstetric care. Based on the treatment of the control group, the patients in the observation group were treated with auricular thumbtack needle at Neifenmi (CO18), Xiong (AH10), Xiongzhui (AH11), Shenmen (TF4), and Jiaogan (AH6a), etc., with one side of auricular point selected, only once for a total of 3 d. The lactation initiation time, lactation adequacy rate at postpartum 72 h, exclusive breastfeeding rate at postpartum 42 d, and breastfeeding score after treatment were compared between the two groups. Real-time quantitative PCR and Western blot method were used to detect the mRNA and protein expression levels of TDP-43, Btn1A1 and XDH.
RESULTS:
After treatment, the lactation initiation time in the observation group was earlier than that in the control group (P<0.01), and breastfeeding score in the observation group was higher than that in the control group (P<0.01). The lactation adequacy rate at postpartum 72 h was 63.8% (30/47) in the observation group, which was higher than 41.7% (20/48) in the control group (P<0.05). The exclusive breastfeeding rate at postpartum 42 d was 72.3% (34/47) in the observation group, which was higher than 47.9% (23/48) in the control group (P<0.05). The mRNA and protein expression levels of TDP-43 and Btn1A1 in breast milk in the observation group were higher than those in the control group (P<0.01), while there was no statistically significant difference in mRNA and protein expression of XDH in breast milk between the two groups (P>0.05).
CONCLUSION
The auricular thumbtack needle in addition to routine care could promote lactation initiation, improve lactation adequacy rate and exclusive breastfeeding rate in primiparous women with cesarean section, and the action mechanism may be related to up-regulation of TDP-43 and Btn1A1 expression.
Pregnancy
;
Humans
;
Female
;
Breast Feeding
;
Cesarean Section
;
Lactation
;
Milk, Human
;
DNA-Binding Proteins
9.Improved outcomes in E2A::HLF positive B-cell acute lymphoblastic leukemia by chimeric antigen receptor T cell therapy and BCL-2 inhibitor.
Shumin CHEN ; Ye LI ; Zheng WANG ; Lin FENG ; Yueping JIA ; Xiaodong MO ; Yu WANG ; Qian JIANG ; Xiaojun HUANG ; Yueyun LAI
Chinese Medical Journal 2023;136(11):1382-1384
10.A robust microsatellite instability detection model for unpaired colorectal cancer tissue samples.
Zili ZHANG ; Hua WAN ; Bing XU ; Hongyang HE ; Guangyu SHAN ; Jingbo ZHANG ; Qixi WU ; Tong LI
Chinese Medical Journal 2023;136(9):1082-1088
BACKGROUND:
Microsatellite instability (MSI) is a key biomarker for cancer immunotherapy and prognosis. Integration of MSI testing into a next-generation-sequencing (NGS) panel could save tissue sample, reduce turn-around time and cost, and provide MSI status and comprehensive genomic profiling in single test. We aimed to develop an MSI calling model to detect MSI status along with the NGS panel-based profiling test using tumor-only samples.
METHODS:
From January 2019 to December 2020, a total of 174 colorectal cancer (CRC) patients were enrolled, including 31 MSI-high (MSI-H) and 143 microsatellite stability (MSS) cases. Among them, 56 paired tumor and normal samples (10 MSI-H and 46 MSS) were used for modeling, and another 118 tumor-only samples were used for validation. MSI polymerase chain reaction (MSI-PCR) was performed as the gold standard. A baseline was built for the selected microsatellite loci using the NGS data of 56 normal blood samples. An MSI detection model was constructed by analyzing the NGS data of tissue samples. The performance of the model was compared with the results of MSI-PCR.
RESULTS:
We first intersected the target genomic regions of the NGS panels used in this study to select common microsatellite loci. A total of 42 loci including 23 mononucleotide repeat sites and 19 longer repeat sites were candidates for modeling. As mononucleotide repeat sites are more sensitive and specific for detecting MSI status than sites with longer length motif and the mononucleotide repeat sites performed even better than the total sites, a model containing 23 mononucleotide repeat sites was constructed and named Colorectal Cancer Microsatellite Instability test (CRC-MSI). The model achieved 100% sensitivity and 100% specificity when compared with MSI-PCR in both training and validation sets. Furthermore, the CRC-MSI model was robust with the tumor content as low as 6%. In addition, 8 out of 10 MSI-H samples showed alternations in the four mismatch repair genes ( MLH1 , MSH2 , MSH6 , and PMS2 ).
CONCLUSION
MSI status can be accurately determined along the targeted NGS panels using only tumor samples. The performance of mononucleotide repeat sites surpasses loci with longer repeat motif in MSI calling.
Humans
;
Microsatellite Instability
;
Colorectal Neoplasms/diagnosis*
;
Microsatellite Repeats/genetics*
;
DNA Mismatch Repair


Result Analysis
Print
Save
E-mail