1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Liuwei Dihuang Pills improve chemotherapy-induced ovarian injury in mice by promoting the proliferation of female germline stem cells.
Bo JIANG ; Wen-Yan ZHANG ; Guang-di LIN ; Xiao-Qing MA ; Guo-Xia LAN ; Jia-Wen ZHONG ; Ling QIN ; Jia-Li MAI ; Xiao-Rong LI
China Journal of Chinese Materia Medica 2025;50(9):2495-2504
This study primarily investigates the effect of Liuwei Dihuang Pills on the activation and proliferation of female germline stem cells(FGSCs) in the ovaries and cortex of mice with premature ovarian failure(POF), and how it improves ovarian function. ICR mice were randomly divided into the control group, model group, Liuwei Dihuang Pills group, Liuwei Dihuang Pills double-dose group, and estradiol valerate group. A mouse model of POF was established by intraperitoneal injection of cyclophosphamide. After successful modeling, the mice were treated with Liuwei Dihuang Pills or estradiol valerate for 28 days. Vaginal smears were prepared to observe the estrous cycle and body weight. After the last administration, mice were sacrificed and sampled. Serum levels of estradiol(E_2), follicle-stimulating hormone(FSH), luteinizing hormone(LH), and anti-Müllerian hormone(AMH) were measured by enzyme-linked immunosorbent assay(ELISA). Hematoxylin-eosin(HE) staining was used to observe ovarian morphology and to count follicles at all stages to evaluate ovarian function. Immunohistochemistry was used to detect the expression of mouse vasa homolog(MVH), a marker of ovarian FGSCs. Immunofluorescence staining, using co-labeling of MVH and proliferating cell nuclear antigen(PCNA), was used to detect the expression and localization of specific markers of FGSCs. Western blot was employed to assess the protein expression of MVH, octamer-binding transcription factor 4(Oct4), and PCNA in the ovaries. The results showed that compared with the control group, the model group exhibited disordered estrous cycles, decreased ovarian index, increased atretic follicles, and a reduced number of follicles at all stages. FSH and LH levels were significantly elevated, while AMH and E_2 levels were significantly reduced, indicating the success of the model. After treatment with Liuwei Dihuang Pills or estradiol valerate, hormone levels improved, the number of atretic follicles decreased, and the number of follicles at all stages increased. MVH marker protein and PCNA proliferative protein expression in ovarian tissue also increased. These results suggest that Liuwei Dihuang Pills regulate estrous cycles and hormone disorders in POF mice, promote the proliferation of FGSCs, improve follicular development in POF mice, and enhance ovarian function.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Cell Proliferation/drug effects*
;
Mice, Inbred ICR
;
Ovary/cytology*
;
Primary Ovarian Insufficiency/genetics*
;
Follicle Stimulating Hormone/metabolism*
;
Humans
;
Anti-Mullerian Hormone/blood*
;
Antineoplastic Agents/adverse effects*
;
Luteinizing Hormone/metabolism*
;
Cyclophosphamide/adverse effects*
4.Identification of characteristics, supply channels, and imperial court processing of Arecae Semen in the Qing court.
Feng-Yuan LI ; Hua-Sheng PENG ; Xue-Ling GUAN ; Yan JIN ; Ting YAO ; Yuan YUAN ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2025;50(11):2924-2930
Qing court records show that Arecae Semen was extensively applied. The royal medical records of the Qing Dynasty document nine types of Arecae Semen, with the Palace Museum preserving seven kinds, totaling twelve cultural relics. Historical documents and physical artifacts corroborate each other, providing evidence for the study of the supply channels and court processing of Arecae Semen in the Qing court. According to relevant Qing court archival records, the sources of Arecae Semen used in the imperial court were diverse, including tributes from foreign countries such as Vietnam and Gurkha, annual tributes from local governments in Guangdong, gifts from close aides, and commodities purchased by the Imperial Household Department from civilian shops. The imperial physicians of the Qing court placed great emphasis on the specifications of Arecae Semen slices and were extremely meticulous about their processing. The variety of Arecae Semen slices used in the Qing palace exceeded those recorded in the botanical texts of the era. Compared with the commonly used processing methods for Arecae Semen in the Qing Dynasty, the imperial physicians adjusted the properties and efficacy of the herbs through different processing techniques, based on the patient's condition, constitution, and other factors, in order to meet the clinical treatment needs of the court. The slicing of Arecae Semen in the Qing court required strict control of thickness, with an average thickness of 0.44 mm, which is significantly thinner than the Arecae Semen slices found in today's markets. The texture was softer, making them easier to chew and absorb. Both the Qing court Arecae Semen slices and the Muxiang Binglang Pills focused on the use of authentic medicinal materials, ensuring the quality of the medicine and enhancing the efficacy of Arecae Semen through meticulous selection and preparation.
China
;
Drugs, Chinese Herbal/history*
;
Humans
;
Medicine, Chinese Traditional/history*
;
History, 19th Century
;
History, Ancient
;
History, 17th Century
;
History, 18th Century
5.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
6.Herbal Textual Research on Kochiae Fructus in Famous Classical Formulas
Huifang HU ; Liping YANG ; Fei CHEN ; Xiaohui MA ; Ling JIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):247-257
In this paper, by referring to ancient and modern literature, the textual research of Kochiae Fructus has been conducted to clarify the name, origin, distribution of production areas, quality specification, taste and efficacy, harvesting time, processing and compatibility taboo, so as to provide reference and basis for the development and utilization of related famous classical formulas. According to the investigation, it can be seen that Difuzi was first published in Sheng Nong's Herbal Classic, and has been used as the official name throughout history. It is also known by other names such as Dimai, Dikui, and Luozhou. The mainstream source of Difuzi in materia medica throughout history is the dried ripe fruit of Kochia scoparia, which is consistent throughout history. In the Han dynasty, it was recorded that Kochiae Fructus was produced in Jingzhou(Hubei province), while modern literature records its distribution throughout the country, so it does not have obvious geoherbalism. The harvesting period of Kochiae Fructus is mostly in the late autumn, and the quality is best when it is full, gray green in color, and no impurities. There are two processing methods for its origin:from the Southern and Northern dynasties to the Ming dynasty, it was dried in the shade, and after the founding of the People's Republic of China, it was dried in the sun. There are few records about the processing of Kochiae Fructus, and its clinical application is mostly based on raw products as medicine. The seedlings are harvested in February of the lunar calendar, and the leaves are taken in April and May, processing in the place of origin is shade drying, the processing methods include burning ash and frying frost, pounding juice and wine soaking. For internal use, it is mostly decocted or mashed, while for external use, it is mostly washed with decoction or taken in a soup bath. Throughout history, it has been recorded that Kochiae Fructus is bitter and cold, and is mainly used for treating bladder fever. After the founding of the People's Republic of China, most of the literature classified it as damp-clearing medicine. Since the 1985 edition of Chinese Pharmacopoeia, it has been recorded that Kochiae Fructus has a pungent and bitter taste, and a cold nature. Returning to the kidney and bladder meridians with functions of clearing heat and dampness, dispelling wind and relieving itching. The clinical contraindications are mainly prohibited for those with deficiency and no dampness and heat. Throughout history, it has been recorded that the taste of the seedlings and leaves is bitter and cold for treatment of dysentery. Since modern times, it has been used to regulate the liver, spleen and large intestine meridians, with functions such as clearing heat and detoxifying, and diuresis. Based on the textual research, it is recommended to use the dried ripe fruit of K. scoparia when developing the famous classical formulas containing Kochiae Fructus, and processing shall be carried out according to the original processing requirements. If the original formula does not specify the processing requirements, the raw products is taken into medicine.
7.Herbal Textual Research on Cnidii Fructus in Famous Classical Formulas
Huifang HU ; Liping YANG ; Fei CHEN ; Xiaohui MA ; Ling JIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):243-253
In this paper, by referring to ancient and modern literature, the textual research of Cnidii Fructus has been conducted to clarify the name, origin, distribution of production areas, quality specification, nature and flavour, efficacy, harvesting and processing, compatibility taboo and others, so as to provide reference and basis for the development and utilization of the relevant famous classical formulas. After textual research, it can be verified that Cnidii Fructus was first published in Sheng Nong's Herbal Classic, the materia medica of all dynasties was named Shechuangzi, and there are also aliases such as Shesu, Shemi, and Qiangmi. The main source for generations was the dried ripe fruit of Cnidium monnieri, and ancient and modern consistent. From the Eastern Han dynasty to Tang dynasty, the origin of Cnidii Fructus was Zibo, Shandong province. During the Five dynasties, it expanded to Yangzhou in Jiangsu province and Xiangyang in Hubei province, the Song dynasty added Shangqiu in Henan province, and it was considered that Yangzhou, Xiangyang and Shangqiu were its genuine producing areas. It was more widely distributed in Ming and Qing dynasties. After the founding of the People's Republic of China, the origin is clearly distributed throughout the country. For its quality evaluation, generally full grain, gray yellow color, strong aroma is the best. The harvesting period in the past dynasties was mostly the fifth lunar month, and the fruit was collected to remove impurities and dry. The mainstream processing in producing area of the past dynasties was net selection of raw products, mixing and steaming with the juice of Rehmanniae Radix and stir-frying were the mainstream processing methods in the past, there were also stir-frying with honey, stir-frying with salt and rice wine, immersing and steaming with rice wine and other methods. In recent times, it has been used in raw products as medicine. Sheng Nong's Herbal Classic recorded Cnidii Fructus was bitter, Supplementary Records of Famous Physicians recorded its acrid for the first time. It was recorded in the Ming dynasty that its nature was warm, acted on the kidney meridian, and had small toxicity. After the founding of the People's Republic of China, most of the literature classified it as a medicine to attack poison, kill insects and relieve itching with the functions of dispelling pathogenic wind and removing dampness, destroying parasites and elieving itching, warming kidney and activating Yang. Clinical contraindications are mainly contraindicated for people with damp-heat from the lower-jiao or kidney heat. Based on the textual research, it is suggested that when developing the famous classical formulas containing Cnidii Fructus, the source shall be the dried ripe fruit of C. monnieri, and then it shall be processed according to the original formulas. If there is no requirement for processing in the formulas, the raw products can be taken into medicine.
8.Study on Kinetic and Static Tasks With Different Resistance Coefficients in Post-stroke Rehabilitation Training Based on Functional Near-infrared Spectroscopy
Ling-Di FU ; Jia-Xuan DOU ; Ting-Ting YING ; Li-Yong YIN ; Min TANG ; Zhen-Hu LIANG
Progress in Biochemistry and Biophysics 2025;52(7):1890-1903
ObjectiveFunctional near-infrared spectroscopy (fNIRS), a novel non-invasive technique for monitoring cerebral activity, can be integrated with upper limb rehabilitation robots to facilitate the real-time assessment of neurological rehabilitation outcomes. The rehabilitation robot is designed with 3 training modes: passive, active, and resistance. Among these, the resistance mode has been demonstrated to yield superior rehabilitative outcomes for patients with a certain level of muscle strength. The control modes in the resistance mode can be categorized into dynamic and static control. However, the effects of different control modes in the resistance mode on the motor function of patients with upper limb hemiplegia in stroke remain unclear. Furthermore, the effects of force, an important parameter of different control modes, on the activation of brain regions have rarely been reported. This study investigates the effects of dynamic and static resistance modes under varying resistance levels on cerebral functional alterations during motor rehabilitation in post-stroke patients. MethodsA cohort of 20 stroke patients with upper limb dysfunction was enrolled in the study, completing preparatory adaptive training followed by 3 intensity-level tasks across 2 motor paradigms. The bilateral prefrontal cortices (PFC), bilateral primary motor cortices (M1), bilateral primary somatosensory cortices (S1), and bilateral premotor and supplementary motor cortices (PM) were examined in both the resting and motor training states. The lateralization index (LI), phase locking value (PLV), network metrics were employed to examine cortical activation patterns and topological properties of brain connectivity. ResultsThe data indicated that both dynamic and static modes resulted in significantly greater activation of the contralateral M1 area and the ipsilateral PM area when compared to the resting state. The static patterns demonstrated a more pronounced activation in the contralateral M1 in comparison to the dynamic patterns. The results of brain network analysis revealed significant differences between the dynamic and resting states in the contralateral PFC area and contralateral M1 area (F=4.709, P=0.038), as well as in the contralateral PM area and ipsilateral M1 area (F=4.218, P=0.049). Moreover, the findings indicated a positive correlation between the activation of the M1 region and the increase in force in the dynamic mode, which was reversed in the static mode. ConclusionBoth dynamic and static resistance training modes have been demonstrated to activate the corresponding brain functional regions. Dynamic resistance modes elicit greater oxygen changes and connectivity to the region of interest (ROI) than static resistance modes. Furthermore, the effects of increasing force differ between the two modes. In patients who have suffered a stroke, dynamic modes may have a more pronounced effect on the activation of exercise-related functional brain regions.
9.Herbal Textual Research on Tribuli Fructus and Astragali Complanati Semen in Famous Classical Formulas
Jiaqin MOU ; Wenjing LI ; Yanzhu MA ; Yue ZHOU ; Wenfeng YAN ; Shijun YANG ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):241-251
By systematically combing ancient and modern literature, this paper examined Tribuli Fructus and Astragali Complanati Semen(ACS) used in the famous classical formulas from the aspects of name, origin, production area, harvesting and processing, clinical efficacy, so as to provide a basis for the development of famous classical formulas containing such medicinal materials. The results showed that the names of Tribuli Fructus in the past dynasties were mostly derived from its morphology, and there were nicknames such as Baijili, Cijili and Dujili. The name of ACS in the past dynasties were mostly originated from its production areas, and there were nicknames such as Baijili, Shayuan Jili and Tongjili. Because both of them had the name of Baijili, confusion began to appear in the Song dynasty. In ancient and modern times, the main origin of Tribuli Fructus were Tribulus terrestris, and ancient literature recorded the genuine producing areas of Tribuli Fructus was Dali in Shaanxi and Tianshui in Gansu, but today it is mainly cultivated in Anhui and Shandong. The fruit is the medicinal part, harvested in autumn throughout history. There is no description of the quality of Tribuli Fructus in ancient times, and the plump, firm texture, grayish-white color is the best in modern times. Traditional processing methods for Tribuli Fructus included stir-frying and wine processing, while modern commonly used is purified, fried and salt-processed. The ancient records of Tribuli Fructus were spicy, bitter, and warm in nature, with modern research adding that it is slightly toxic. The main effects of ancient and modern times include treating wind disorders, improving vision, promoting muscle growth, and treating vitiligo. The mainstream base of ACS used throughout history is Astragalus complanatus. Ancient texts indicated ACS primarily originated from Shaanxi province. Today, the finest varieties come from Tongguan and Dali in Shaanxi. The medicinal part is the seed, traditionally harvested in autumn. Modern harvesting occurs in late autumn or early winter, followed by sun-drying. Ancient texts valued seeds with a fragrant aroma as superior, while modern standards prioritize plump, uniform and free of impurities. Traditional processing methods for ACS included frying until blackened and wine-frying, while modern practice commonly employs purification methods. In terms of medicinal properties, the ancient and modern records are sweet and warm in nature. Due to originally classified under Tribuli Fructus, its effects were thus regarded as equivalent to those of Tribuli Fructus, serving as the medicine for treating wind disorders, additional functions included tonifying the kidneys and treating vitiligo. The present record of its efficacy is to tonify the kidney and promote Yang, solidify sperm and reduce urine, nourish the liver and brighten the eye, etc. Based on the textual research results, it is suggested that when developing the famous classical formulas of Tribuli Fructus medicinal materials, we should pay attention to the specific reference object of Baijili, T. terrestris and A. complanatus should be identified and selected, and the processing method should be in accordance with the requirements of the formulas.
10.Association between pubertal timing and depressive symptoms among high school students in Suzhou City
HU Jiale, ZHANG Liye, LING Ruizhe, HAN Di, WANG Xi, HU Jia, SHEN Hui
Chinese Journal of School Health 2025;46(10):1469-1473
Objective:
To investigate the relationship between pubertal timing and depressive symptoms among high school students in Suzhou, so as to provide scientific evidence for promoting adolescents mental health.
Methods:
From October 2023 to January 2024, 3 369 students were selected from 20 high schools in Suzhou using stratified cluster random sampling method. Physical examinations and questionnaire surveys were conducted. The Preece & Baines growth Model 1 was used to calculate the age at take off of height velocity (ATO) and age at peak height velocity (APHV), categorizing students into three groups: early pubertal timing group (< P 15 ), ontime group ( P 15 - P 85 ), and delayed group (> P 85 ). Binary Logistic regression was used to analyze its association with depressive symptoms.
Results:
The ATO for male and female high school students in Suzhou was (9.35±1.23) and ( 8.12 ±1.52) years old, respectively. The mean APHV was (12.35±0.74) years old for boys and (10.91±0.82) years old for girls. The overall prevalence of depressive symptoms was 34.22%, with no statistically significant gender difference ( χ 2=0.42, P =0.52). Significant differences in depressive symptom prevalence were observed across grade levels, breakfast frequency, weekly days of moderate to vigorous physical activity, daily sleep duration, history of school bullying, and the presence of Internet addiction ( χ 2=5.03-69.21, all P < 0.05 ). After adjusting for age, body mass index, region, boarding status, breakfast frequency, weekly moderate to vigorous physical activity days, sleep duration, campus bullying, and presence of Internet addiction, Logistic regression analysis revealed that when ATO was used to evaluate pubertal timing, the risk of depressive symptoms in the delayed group of boys was 1.65 times that of the on time group (95% CI =1.24-2.19); when APHV was used to evaluate pubertal timing, the risks of depressive symptoms in the early pubertal timing group and delayed group of boys were 1.43 times (95% CI =1.07-1.91) and 1.41 times (95% CI =1.05-1.88) of that of the on time group, respectively (all P <0.05). No statistically significant associations were found among females (all P > 0.05 ).
Conclusion
The prevalence of depressive symptoms among high school students in Suzhou is relatively high, and both early and delayed puberty timing in boys are associated with depressive symptoms.


Result Analysis
Print
Save
E-mail