1.Methods and Strategies Employed in Compatibility and Formulation of New Chinese Medicinal Material Resources
Wenhua MING ; Qingqing LI ; Caifeng LI ; Yeran WANG ; Lan WANG ; Yanwen LI ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):248-256
Chinese medicinal materials serve as the material foundation of traditional Chinese medicine (TCM) culture. The sustainable development of Chinese medicinal material resources is a focal point in the modernization of TCM. With the increasing scarcity of Chinese medicinal material resources, the expansion of new Chinese medicinal material resources has become a crucial means for the sustainable utilization of these resources. New Chinese medicinal material resources refer to natural resources that have been newly discovered or developed, possessing potential medicinal value or healthcare functions, which fall outside the traditional application scope of herbal medicines. These resources have not yet been widely recognized or applied within the framework of traditional TCM theory. They specifically include artificial substitutes for endangered medicinal materials, new medicinal parts of medicinal plants, medicinal materials with expanded clinical applications, and foreign medicinal resources. The rational compatability and formulation of new Chinese medicinal material resources are essential pathways for integrating them into the TCM system. Due to the weak foundational research on new Chinese medicinal material resources in China, the characteristics of these resources that align with the TCM theory are not yet fully understood, posing numerous constraints on formulating prescriptions based on the traditional compatibility principles of TCM. This paper integrates the traditional formulation theory of TCM with modern data integration methods, proposing four formulation models for new TCM resources: synergistic compatibility, substitutive compatibility, symptom-based compatibility, and efficacy semantic compatibility. These models provide new insights for the application of new Chinese medicinal material resources, not only facilitating their rational use in clinical practice but also offering theoretical support for the development and compatibility research of these resources.
2.Methods and Strategies Employed in Compatibility and Formulation of New Chinese Medicinal Material Resources
Wenhua MING ; Qingqing LI ; Caifeng LI ; Yeran WANG ; Lan WANG ; Yanwen LI ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):248-256
Chinese medicinal materials serve as the material foundation of traditional Chinese medicine (TCM) culture. The sustainable development of Chinese medicinal material resources is a focal point in the modernization of TCM. With the increasing scarcity of Chinese medicinal material resources, the expansion of new Chinese medicinal material resources has become a crucial means for the sustainable utilization of these resources. New Chinese medicinal material resources refer to natural resources that have been newly discovered or developed, possessing potential medicinal value or healthcare functions, which fall outside the traditional application scope of herbal medicines. These resources have not yet been widely recognized or applied within the framework of traditional TCM theory. They specifically include artificial substitutes for endangered medicinal materials, new medicinal parts of medicinal plants, medicinal materials with expanded clinical applications, and foreign medicinal resources. The rational compatability and formulation of new Chinese medicinal material resources are essential pathways for integrating them into the TCM system. Due to the weak foundational research on new Chinese medicinal material resources in China, the characteristics of these resources that align with the TCM theory are not yet fully understood, posing numerous constraints on formulating prescriptions based on the traditional compatibility principles of TCM. This paper integrates the traditional formulation theory of TCM with modern data integration methods, proposing four formulation models for new TCM resources: synergistic compatibility, substitutive compatibility, symptom-based compatibility, and efficacy semantic compatibility. These models provide new insights for the application of new Chinese medicinal material resources, not only facilitating their rational use in clinical practice but also offering theoretical support for the development and compatibility research of these resources.
3.Transzonal Projections and Follicular Development Abnormalities in Polycystic Ovary Syndrome
Di CHENG ; Yu-Hua CHEN ; Xia-Ping JIANG ; Lan-Yu LI ; Yi TAN ; Ming LI ; Zhong-Cheng MO
Progress in Biochemistry and Biophysics 2025;52(10):2499-2511
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting a substantial proportion of women of reproductive age. It is frequently associated with ovulatory dysfunction, infertility, and an increased risk of chronic metabolic diseases. A hallmark pathological feature of PCOS is the arrest of follicular development, closely linked to impaired intercellular communication between the oocyte and surrounding granulosa cells. Transzonal projections (TZPs) are specialized cytoplasmic extensions derived from granulosa cells that penetrate the zona pellucida to establish direct contact with the oocyte. These structures serve as essential conduits for the transfer of metabolites, signaling molecules (e.g., cAMP, cGMP), and regulatory factors (e.g., microRNAs, growth differentiation factors), thereby maintaining meiotic arrest, facilitating metabolic cooperation, and supporting gene expression regulation in the oocyte. The proper formation and maintenance of TZPs depend on the cytoskeletal integrity of granulosa cells and the regulated expression of key connexins, particularly CX37 and CX43. Recent studies have revealed that in PCOS, TZPs exhibit significant structural and functional abnormalities. Contributing factors—such as hyperandrogenism, insulin resistance, oxidative stress, chronic inflammation, and dysregulation of critical signaling pathways (including PI3K/Akt, Wnt/β‑catenin, and MAPK/ERK)—collectively impair TZP integrity and reduce their formation. This disruption in granulosa-oocyte communication compromises oocyte quality and contributes to follicular arrest and anovulation. This review provides a comprehensive overview of TZP biology, including their formation mechanisms, molecular composition, and stage-specific dynamics during folliculogenesis. We highlight the pathological alterations in TZPs observed in PCOS and elucidate how endocrine and metabolic disturbances—particularly androgen excess and hyperinsulinemia—downregulate CX43 expression and impair gap junction function, thereby exacerbating ovarian microenvironmental dysfunction. Furthermore, we explore emerging therapeutic strategies aimed at preserving or restoring TZP integrity. Anti-androgen therapies (e.g., spironolactone, flutamide), insulin sensitizers (e.g., metformin), and GLP-1 receptor agonists (e.g., liraglutide) have shown potential in modulating connexin expression and enhancing granulosa-oocyte communication. In addition, agents such as melatonin, AMPK activators, and GDF9/BMP15 analogs may promote TZP formation and improve oocyte competence. Advanced technologies, including ovarian organoid models and CRISPR-based gene editing, offer promising platforms for studying TZP regulation and developing targeted interventions. In summary, TZPs are indispensable for maintaining follicular homeostasis, and their disruption plays a pivotal role in the pathogenesis of PCOS-related folliculogenesis failure. Targeting TZP integrity represents a promising therapeutic avenue in PCOS management and warrants further mechanistic and translational investigation.
4.In vitro degradation behavior of Mg-Zn-Ca alloys
Weiwei LAN ; Yaodong YU ; Di HUANG ; Weiyi CHEN
Chinese Journal of Tissue Engineering Research 2024;28(5):717-723
BACKGROUND:Due to the complex physiological environment of the human body,a wide variety of simulated physiological fluids have been chosen for the current degradation experiments.Therefore,it is of great interest to analyze the degradation behavior of Mg-Zn-Ca alloys in different simulated body fluid environments. OBJECTIVE:To investigate the degradation process and property changes of Mg-Zn-Ca alloy in different simulated body fluids,and to clarify the influence of Ca content and simulated body fluid type on the alloy. METHODS:Mg-Zn-Ca alloys with calcium content of 0.2%,0.5%and 1%were prepared by melting extrusion molding process and were named Mg-Zn-0.2Ca,Mg-Zn-0.5Ca and Mg-Zn-1Ca alloys in turn,with Mg-Zn alloy as the control.The prepared alloys were placed into three simulated body liquids(physiological saline,PBS and Hank's solution),and the morphology,compositional changes,mass loss,pH value and mechanical properties were characterized and analyzed during the degradation. RESULTS AND CONCLUSION:(1)With the extension of degradation time,a large number of nanoscale lamellae and columnar structures were generated on the surface of the degraded alloy,and the main components were MgO and Mg(OH)2.The degradation rate of the four kinds of alloys in physiological saline was the fastest,and that in Hank's solution was the slowest.The degradation rate in physiological saline was as follows:Mg-Zn
5.The Development of Chinese Herbal Formulae for Non-severe COVID-19 Based on Artificial Intelligence Technology and Investigation of Its Action Mechanisms
Wenting HUANG ; Liansheng QIAO ; Di YAN ; Tengwen LIU ; Hongmei CAO ; Hongyan GUO ; Zhi ZHANG ; Jing CHENG ; Lan XIE ; Qingquan LIU
Journal of Traditional Chinese Medicine 2024;65(1):103-112
ObjectiveTo develop traditional Chinese medicine (TCM) formulae for the treatment of nonsevere coronavirus disease 2019 (COVID-19) and to explore its anti-inflammatory mechanism. MethodsThe dysregulated signaling pathways were determined in macrophages from bronchoalveolar lavage fluid of COVID-19 patients and in lung epithelial cells infected with SARS-CoV-2 in vitro based on transcriptome analysis. A total of 102 TCM formulae for the clinical treatment of nonsevere COVID-19 were collected through literature. The pathway-reversing rates of these formulae in macrophages and lung epithelial cells were evaluated based on signature signaling pathways, and the basic formula was determined in conjunction with TCM theory. The commonly used Chinese materia medica for nonsevere COVID-19 were summarized from the 102 TCM formulae as abovementioned. And together with the screening results from the Pharmacopoeia of the People's Republic of China, a “Chinese materia medica pool” was esta-blished for the development of TCM formulae for COVID-19. The regulatory effects of each herb on signaling pathways were obtained based on targeted transcriptome analysis. Oriented at reversing dysregulated signaling pathways of COVID-19, the calculation was carried out, and the artificial intelligent methods for compositing formulae, that are exhaustive method and parallel computing, were used to obtain candidate compound formulas. Finally, with reference to professional experience, an innovative formula for the treatment of nonsevere COVID-19 was developed. The ethanol extract of the formula was evaluated for its anti-inflammatory effects by detecting the mRNA expression of interleukin 1b (Il1b), C-X-C motif chemokine ligand 2 (Cxcl2), C-X-C motif chemokine ligand 10 (Cxcl10), C-C motif chemokine ligand 2 (Ccl2), nitric oxide synthase 2 (Nos2), and prostaglandin-endoperoxide synthase 2 (Ptgs2) using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in RAW264.7 cells treated with lipopolysaccharide (LPS). ResultsIn macrophages and lung epithelial cells, 34 dysregulated signaling pathways associated with COVID-19 were identified respectively. The effects of the 102 formulae for clinical treatment of nonsevere COVID-19 were evaluated based on the dysregulated signaling pathways and targeted transcriptome, and the result showed that Yinqiao Powder and Pingwei Powder (银翘散合平胃散, YQPWP) ranked first, reversing 91.18% of the dysregulated signaling pathways in macrophages and 100% of the dysregulated signaling pathways in lung epithelial cells. Additionally, YQPWP had the function of scattering wind and clearing heat, resolving toxins and removing dampness in accordance with the pathogenesis of wind-heat with dampness in COVID-19. It was selected as the basic formula, and was further modified and optimized to develop an innovative fomula Qiaobang Zhupi Yin (翘蒡术皮饮, QBZPY) based on expert experience and artificial intelligence in composing formulae. QBZPY can reverse all the dysregulated signaling pathways associated with COVID-19 in macrophages and lung epithelial cells, with the reversing rates of 100%. The chief medicinal of QBZPY, including Lianqiao (Fructus Forsythiae), Xixiancao (Herba Siegesbeckiae) and Niubangzi (Fructus Arctii), can down-regulate multiple signaling pathways related with virus infection, immune response, and epithelial damage. RT-qPCR results indicated that compared with the model group, the QBZPY group down-regulated the mRNA expression of Il1b, tumor necrosis factor (Tnf), Cxcl2, Cxcl10, Ccl2, Nos2 and Ptgs2 induced by LPS in RAW264.7 cells (P<0.05 or P<0.01). ConclusionBased on targeted transcriptome analysis, expert experience in TCM and artificial intelligence, QBZPY has been developed for the treatment of nonsevere COVID-19. The ethanol extract of QBZPY has been found to inhibit mRNA expression of several pro-inflammatory genes in a cellular inflammation model.
6.The identification of a novel reassortant H3N2 avian influenza virus based on nanopore sequencing technology and genetic characterization
Lan CAO ; Dan XIA ; Yiyun CHEN ; Tengfei ZHOU ; Shanghui YIN ; Yanhui LIU ; Kuibiao LI ; Biao DI ; Zhoubin ZHANG ; Pengzhe QIN
Chinese Journal of Epidemiology 2024;45(4):574-578
Objective:To identify a novel reassortant H3N2 avian influenza virus using nanopore sequencing technology and analyze its genetic characteristics.Methods:The positive samples of the H3N2 avian influenza virus, collected from the external environment in the farmers' market of Guangzhou, were cultured in chicken embryos. The whole genome was sequenced by targeted amplification and nanopore sequencing technology. The genetic characteristics were analyzed using bioinformatics software.Results:The phylogenetic trees showed that each gene fragment of the strain belonged to the Eurasian evolutionary branch, and the host source was of avian origin. The HA gene was closely related to the origin of the H3N6 virus. The NA gene was closely related to the H3N2 avian influenza virus from 2017 to 2020. The PB1 gene was closely related to the H5N6 avian influenza virus in Guangxi Zhuang Autonomous Region and Fujian Province from 2016 to 2022 and was not related to the PB1 gene of the H5N6 avian influenza epidemic strain in Guangzhou. The other internal gene fragments had complex sources with significant genetic diversity. Molecular characteristics indicated that the strain exhibited the molecular characteristics of a typical low pathogenic avian influenza virus and tended to bind to the receptors of avian origin. On important protein sites related to biological characteristics, this strain had mutations of PB2-L89V, PB1-L473V, NP-A184K, M1-N30D/T215A, and NS1-P42S/N205S.Conclusions:This study identified a novel reassortant H3N2 avian influenza virus by nanopore sequencing, with the PB1 gene derived from the H5N6 avian influenza virus. The virus had a low ability to spread across species, but further exploration was needed to determine whether its pathogenicity to the host was affected.
7.Comparison of Wild and Cultivated Codonopsis pilosula Based onTraditional Quality Evaluation
Xiaoyan LAN ; Chunfang TIAN ; Zhilai ZHAN ; Li ZHOU ; Xiang LI ; Zidong QIU ; Tiegui NAN ; Qili YUAN ; Xiaoliang LIN ; Congkui TIAN ; Meilan CHEN ; Liping KANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):156-164
ObjectiveTo conduct a systematic comparative study on wild and cultivated Codonopsis pilosula(CP) from three aspects, including characters, microscopy, and contents of primary and secondary metabolites. MethodWild and cultivated CP samples were collected, their characters were measured using vernier caliper, tape measure and balance, the paraffin sections were stained with safranin-fixed green dyeing, and their microstructure were observed under the optical microscope. The content of alcohol-soluble extracts in wild and cultivated CP was determined according to the method for determination of extract under CP in the 2020 edition of Chinese Pharmacopoeia, the starch content was determined by anthrone colorimetry, the content of total polysaccharides was determined by kit method, Fiber analyzer was used to determine the content of fiber components, and ultra performance liquid chromatography(UPLC) was used to determine the content of monosaccharides, disaccharides and some secondary metabolites. Multivariate statistical analysis methods such as principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were employed to screen key differential components between wild and cultivated CP on the basis of variable importance in the projection(VIP) value>1 and P<0.05. ResultIn terms of morphological characteristics, the "lion's head-like" shape, longitudinal wrinkles, and circumferential wrinkles below the root cap of wild CP were more pronounced in wild CP compared to the cultivated ones. Regarding transverse sectional features, wild CP had more fissures on the outer side of the cortex and a larger duramen. Under microscopic examination, wild CP had more stone cells, a larger proportion of xylem, and the presence of cork cells arranged in rings in the xylem, while cultivated CP has a larger proportion of phloem, smaller vessel diameters, and a more loosely arranged vascular system. In terms of primary metabolites, the contents of 45% ethanol-soluble extract and total polysaccharides in cultivated CP were significantly higher than those in the wild ones(P<0.05), the contents of lignin, hemicellulose, cellulose, fructose and glucose in wild CP were significantly higher than those in the cultivated ones(P<0.05), while sucrose content in the cultivated CP was significantly higher than that in the wild ones(P<0.05). Concerning secondary metabolites, the contents of tryptophan and tangshenoside Ⅰ in cultivated CP were significantly higher than those in the wild ones(P<0.05), whereas the contents of lobetyolinin, lobetyol and atractylenolide Ⅲ in wild CP were significantly higher than those in the cultivated ones(P<0.05). ConclusionThere are significant differences between wild and cultivated CP in terms of morphological characteristics, microscopic features and chemical composition. Glucose, fructose, sucrose, tangshenoside Ⅰ, tryptophan and cellulose components are the key differential components between wild and cultivated CP. Wild CP contains more polyacetylenes and fructose, whereas cultivated CP has higher levels of tangshenoside Ⅰ and sucrose, with noticeably lower cellulose content. These distinctions may be related to their growth conditions, growth years and cultivation techniques. Based on the results of this study, it is recommended to increase polyacetylenes and the content ratio of fructose to sucrose as an indicators to characterize different production methods of CP, in order to guide the high-quality production of CP.
8.Comparison of Wild and Cultivated Paeoniae Radix Rubra Based on Traditional Quality Evaluation
Chunfang TIAN ; Qiannan HU ; Zhilai ZHAN ; Xiaoyan LAN ; Xiang LI ; Li ZHOU ; Tiegui NAN ; Zidong QIU ; Liping KANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(14):165-174
ObjectiveTo compare wild and cultivated Paeoniae Radix Rubra(PRR) in three aspects, including character, microscope, determination of primary and secondary metabolites. MethodSeventeen batches of wild and nine batches of cultivated PRR were collected,their character data were measured by vernier caliper and scales, and their paraffin sections were made by safranin-fixed green dyeing for the observation of microscopic features. The content of ethanol-soluble extracts and total tannin from wild and cultivated PRR was determined by the method of general principle 2201 and 2202 in the 2020 edition of Chinese Pharmacopoeia, the content of polysaccharides was determined by phenol-sulfuric acid method. Anthrone colorimetry was used to determine the content of starch, and Van Soest method of washing fiber was used to determine the content of fiber. The contents of fructose, glucose and sucrose in wild and cultivated PRR were determined by ultra-high performance liquid chromatography evaporative light scattering detection(UPLC-ELSD), and the secondary metabolites(gallic acid, methyl gallate, catechin, oxypaeoniflorin, albiflorin, paeoniflorin, ellagic acid, 1,3,4,6-tetragalloylglucose, galloylpaeoniflorin, 1,2,3,4,6-O-pentagalloylglucose, naringenin, benzoylpaeoniflorin and benzoylalbiflorin) were determined by UPLC. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to analyze the data of wild and cultivated PRR, the contribution of different factors to the difference was determined according to the variable importance in the projection(VIP) value>1 and P<0.05. ResultIn term of characters, wild PRR showed the traditional characteristic of Zaopi Fencha, its outer skin was loose and easy to fall off, its surface had longitudinal furrow and wrinkle, but the outer skin of cultivated PRR was not easy to fall off, and its surface was relatively smooth. The radial texture of xylem of wild PRR cross-section was more obvious, showing radial striations, vacuoles and more cracks, while the radial texture of xylem of cultivated PRR cross-section was not obvious, dense and some had cracks. Microscopically, the number of radial vessels arranged in the xylem of wild PRR was more than that of cultivated PRR, the number of calcium oxalate clusters in the phloem and xylem of wild PRR was more than that of cultivated PRR, while the number of starch grains was significantly higher in cultivated PRR. In terms of the content of primary chemical constituents, the contents of polysaccharides and starch of cultivated PRR were significantly higher than those of wild PRR(P<0.05), while the contents of cellulose, lignin, fructose and glucose of wild PRR were significantly higher than those of cultivated PRR(P<0.05). The results of determination of 13 secondary metabolites showed that the contents of paeoniflorin, methyl gallate, catechin and oxypaeoniflorin in wild PRR were significantly higher than those in cultivated PRR(P<0.05), while the contents of albiflorin, gallic acid, ellagic acid, naringenin, benzoylpaeoniflorin and benzoylalbiflorin were significantly lower than those of cultivated PRR(P<0.05). A total of 10 variables contributing to the differentiation between wild and cultivated PRR were screened, including albiflorin, cellulose, benzoylpaeoniflorin, oxypaeoniflorin, naringenin, ellagic acid, starch, lignin, paeoniflorin and total tannins. ConclusionThere are significant differences between wild and cultivated PRR in characters, microscopic characteristics, contents of primary and secondary metabolites. It is suggested that the content ratio of paeoniflorin and albiflorin, the contents of oxypaeoniflorin and cellulose can be used as indicators to characterize production methods of PRR so as to improve the quality standard of PRR. This study can provide reference for the improvement of quality standard of PRR and the guidance of high quality production of PRR.
9.A retrospective study on the evolution of TCM syndrome and TCM syndrome elements in the course of disease in 1,049 patients with psoriasis vulgaris
Jiayue WANG ; Ping LI ; Dongmei ZHOU ; Yanping BAI ; Xingwu DUAN ; Haibing LAN ; Yiding ZHAO ; Jingxia ZHAO ; Yan WANG ; Tingting DI ; Yujiao MENG ; Zhaoxia CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(10):1438-1448
Objective The study aimed to elucidate the evolution of the syndromes in Traditional Chinese Medicine(TCM)and TCM syndrome elements in different chronic stages of psoriasis vulgaris.Methods A database was constructed using electronic medical records collected from July 2019 to March 2024 from 1,049 patients with psoriasis vulgaris.The study used Sankey diagrams and network association graphs to analyze the evolution of TCM syndromes and their elements in patients at the different stages:initial diagnosis,progressive stage(Week 2-3),progressive stage(Week 4-5),skin lesion improvement stage(Week 6-7),and remission stage.The syndrome elements network was constructed using community detection algorithms,and the association rules between local skin lesion syndrome differentiation and overall syndrome differentiation were displayed using heatmaps.Results(ⅰ)Initial diagnosis.In the syndrome differentiation of local skin lesions,blood heat syndrome was the most common(79.79%);among the disease location of TCM syndrome elements(called"disease location"),liver was the most prevalent(35.62%);and among the pathological factors of TCM syndrome elements(called"pathological factors"),fire(heat)was the most common(75.48%).(ⅱ)Active stage(Week 2-3).In the syndrome differentiation of local skin lesions,blood heat syndrome remained the most prevalent(73.13%);among the disease location,liver was still the most prevalent(31.71%);and among the pathological factors,fire(heat)continued to be the most common(82.11%),while dampness(22.26%)and qi stagnation(8.39%)began to increase.(ⅲ)Active stage(Week 4-5).The syndrome differentiation of local skin lesions was dominated by blood heat syndrome(45.91%)and blood dryness syndrome(37.19%);among disease location,the interior was the most prevalent(15.25%);and among the pathological factors,fire(heat)remained the most common(50.66%),with an increase in yin deficiency(34.26%).(ⅳ)Skin lesion improvement stage(Week 6-7).In the syndrome differentiation of local skin lesions,both blood dryness syndrome(49.44%)and blood stasis syndrome(33.33%)increased;among the disease location,meridians increased most significantly and became the most prevalent(13.44%);and among the pathological factors,blood stasis increased most significantly and became the most prevalent(28.20%).(ⅴ)Remission stage.In the syndrome differentiation of local skin lesions,blood stasis syndrome became the primary(55.69%),while the percentage of blood dryness syndrome decreased(21.16%);meridians(25.71%)and blood stasis(62.34%)remained the most predominant syndrome elements related to disease location or pathological factors.Conclusion The overall pattern of TCM syndromes in psoriasis vulgaris evolved from excess to deficiency.From the initial diagnosis to the active phase(Week 2-3),heat syndrome dominated;during the active phase(Week 4-5),heat syndrome coexisted with damp syndrome or yin deficiency syndrome;changes in the syndrome element network were the most significant during the lesion improvement phase,with blood stasis gradually increasing and peaking during the remission phase.Blood stasis,dampness,and qi stagnation were pervasive throughout psoriasis vulgaris;qi stagnation and blood stasis may be the main elements causing further deterioration and prolonged course of the disease during the active phase in patients.
10.Dynamic changes and function of mitochondria in development of em-bryonic hematopoietic stem cells
Rong ZHANG ; Haixin ZHAO ; Jie ZHOU ; Di LIU ; Yu LAN ; Bing LIU
Chinese Journal of Pathophysiology 2024;40(5):769-776
AIM:To describe the dynamic characteristics of mitochondria in the development of mouse embryonic hematopoietic stem cells,and to explore the function of mitochondria in this process.METHODS:Single-cell transcrip-tomic data of continuous developmental hematopoietic stem cell-related populations were analyzed to describe the dynamic changes of genes related to mitochondrial synthesis and energy metabolism.To explore the dynamic changes in the number and activity of mitochondria during the development of hematopoietic stem cells,we detected the mitochondrial number and mitochondrial membrane potential of the cells in each stage of hematopoietic stem cell development by fluorescent probe staining combined with flow cytometry.We added small molecule inhibitors of mitochondrial synthesis and energy metabolism and used hematopoietic cell colony formation assay to detect the effect of mitochondrial function inhibition on the induction of hematopoietic products in vitro.RESULTS:(1)Single-cell transcriptome analysis showed that genes in-volved in mitochondrial synthesis and oxidative phosphorylation were significantly up-regulated in endothelial cell and type Ⅰ pre-hematopoietic stem cell compared with those involved in glycolysis,and these genes could significantly distinguish continuous dynamic populations.(2)The results of fluorescence staining and flow cytometry analysis showed that mito-chondrial number and mitochondrial membrane potential had an increasing trend during the continuous development of he-matopoietic stem cell,reaching the highest level in the precursor stage of type 2 pre-hematopoietic stem cell,and decreasing in the mature hematopoietic stem cell of fetal liver.(3)Compared with control group,inhibition of mitochondrial respirato-ry chain Ⅰ and Ⅴ significantly reduced the number of hematopoietic colonies(P<0.05).CONCLUSION:(1)Genes re-lated to mitochondrial synthesis and oxidative phosphorylation are highly expressed in hemogenic endothelial cells and type Ⅰpre-hematopoietic stem cells,and can be used to distinguish continuous developing populations.(2)The mitochondrial number and mitochondrial membrane potential increased continuously during hematopoietic stem cell development and reached the highest level in type 2 pre-hematopoietic stem cells.(3)Inhibition of mitochondrial respiratory chain Ⅰ and Ⅴ significantly reduced the production of hematopoietic products in vitro.

Result Analysis
Print
Save
E-mail