1.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
2.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
3.Process Optimization and Health Risk Assessment of Calcined Haematitum Based on QbD Concept
Yue YANG ; Jingwei ZHOU ; Jialiang ZOU ; Guorong MEI ; Yifan SHI ; Lei ZHONG ; Jiaojiao WANG ; Xuelian GAN ; Dewen ZENG ; Xin CHEN ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):187-196
ObjectiveTo investigate the processing technology of calcined Haematitum based on the concept of quality by design(QbD) and to assess its health risk. MethodsTaking whole iron content, Fe2+ dissolution content and looseness as critical quality attributes(CQAs), and calcination temperature, calcination time, spreading thickness and particle size as critical process parameters(CPPs) determined by the failure mode and effect analysis(FMEA), the processing technology of calcined Haematitum was optimized by orthogonal test combined with analytic hierarchy process-criteria importance through intercriteria correlation(AHP-CRITIC) hybrid weighting method. The contents of heavy metals and harmful elements were determined by inductively coupled plasma mass spectrometry, and the health risk assessment was carried out by daily exposure(EXP), target hazard quotient(THQ) and lifetime cancer risk(LCR), and the theoretical value of the maximum limit was deduced. ResultsThe optimal processing technology for calcined Haematitum was calcination at 650 ℃, calcination time of 1 h, particle size of 0.2-0.5 cm, spreading thickness of 1 cm, and vinegar quenching for 1 time[Haematitum-vinegar(10:3)]. The contents of 5 heavy metals and harmful elements in 13 batches of calcined Haematitum were all decreased with reductions of up to 5-fold. The cumulative THQ of 2 batches of samples was>1, while the cumulative THQ of all batches of Haematitum was>1. The LCR of As in 1 batches of Haematitum was 1×10-6-1×10-4, and the LCR of the rest was<1×10-6, and the LCRs of calcined Haematitum were all<1×10-6, indicating that the carcinogenic risk of calcined Haematitum was low, but special attention should still be paid to Haematitum medicinal materials. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg were formulated as 1 014, 25, 17, 27, 7 mg·kg-1. ConclusionThe optimized processing technology of calcined Haematitum is stable and feasible, and the contents of heavy metals and harmful elements are reduced after processing. Preliminary theoretical values of the maximum limits of Cu, As, Cd, Pb and Hg are formulated to provide a scientific basis for the formulation of standards for the limits of harmful elements in Haematitum.
4.Optimization of Processing Technology of Calcined Pyritum Based on QbD Concept and Its XRD Fingerprint Analysis
Xin CHEN ; Jingwei ZHOU ; Haiying GOU ; Lei ZHONG ; Tianxing HE ; Wenbo FEI ; Jialiang ZOU ; Yue YANG ; Dewen ZENG ; Lin CHEN ; Hongping CHEN ; Shilin CHEN ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):197-205
ObjectiveBased on the concept of quality by design(QbD), the processing process of calcined Pyritum was optimized, and its X-ray diffraction(XRD) fingerprint was established. MethodsThe safety, effectiveness and quality controllability of calcined Pyritum were taken as the quality profile(QTPP), the color, hardness, metallic luster, phase composition, the contents of heavy metals and hazardous elements were taken as the critical quality attributes(CQAs), and the calcination temperature, calcination time, paving thickness and particle size were determined as the critical process parameters(CPPs). Differential thermal analysis, X-ray diffraction(XRD) and inductively coupled plasma mass spectrometry(ICP-MS) were used to analyze the correlation between the calcination temperature and CQAs of calcined Pyritum. Then, based on the criteria importance through intercriteria correlation(CRITIC)-entropy weight method, the optimal processing process of calcined Pyritum was optimized by orthogonal test. Powder XRD was used to analyze the phase of calcined Pyritum samples processed according to the best process, and the mean and median maps of calcined Pyritum were established by the superposition of geometric topological figures, and similarity evaluation and cluster analysis were carried out. ResultsThe results of single factor experiments showed that the physical phase of Pyritum changed from FeS2 to Fe7S8 during the process of temperature increase, the color gradually deepened from dark yellow, and the contents of heavy metals and harmful elements decreased. The optimized processing process of calcined Pyritum was as follows:calcination temperature at 750 ℃, calcination time of 2.5 h, paving thickness of 3 cm, particle size of 0.8-1.2 cm, vinegar quenching 1 time[Pyritum-vinegar(10∶3)]. After calcination, the internal structure of Pyritum was honeycomb-shaped, which was conducive to the dissolution of active ingredients. XRD fingerprints of 13 batches of calcined Pyritum characterized by 10 common peaks were established. The similarities of the relative peak intensities of the XRD fingerprints of the analyzed samples were>0.96, and it could effectively distinguish the raw products and unqualified products. ConclusionTemperature is the main factor affecting the quality of calcined Pyritum. After processing, the dissolution of the effective components in Pyritum increases, and the contents of heavy metals and harmful substances decrease, reflecting the function of processing to increase efficiency and reduce toxicity. The optimized processing process is stable and feasible, and the established XRD fingerprint can be used as one of the quality control standards of calcined Pyritum.
5.The role of 3-hydroxy-3-methylglutaryl-coenzyme A reductase in liver diseases
Yangling ZENG ; Yunyong WANG ; Haimei GUAN ; Tianwen WANG ; Baohua XIE ; Guobao LI ; Riyun ZHANG ; Tingshuai WANG ; Dewen MAO
Journal of Clinical Hepatology 2025;41(5):983-990
Cholesterol is an essential molecule for the biosynthesis of cell membranes and cell proliferation and differentiation, and the liver plays a central role in cholesterol metabolism and is responsible for the synthesis, uptake, secretion, and transport of cholesterol. The initial stages of cholesterol synthesis in the liver are particularly important, and abnormalities in such stages are closely associated with the progression of various liver diseases. Studies have shown that as a key rate-limiting enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) has well-defined regulatory properties and has been confirmed as an important target for the regulation of various liver diseases. This article reviews the process of cholesterol metabolism, the degradation and regulatory mechanisms of HMGCR, and the application of inhibitors, as well as the role of HMGCR in liver diseases, in order to provide new insights for scientific research and the clinical prevention and treatment of liver diseases.
6.Progress on the application of metabolomics in the prevention and treatment of liver failure using traditional Chinese medicine
Mengling HU ; Jiongfen LI ; Yangling ZENG ; Riyun ZHANG ; Dewen MAO
Journal of Clinical Hepatology 2025;41(6):1207-1212
With the concurrent development of traditional Chinese medicine (TCM) and metabolomics in the diagnosis and treatment of liver failure, techniques such as nuclear magnetic resonance, mass spectrometry, chromatography, metabolic flux analysis, and bioinformatics enable the qualitative or quantitative analysis of endogenous small molecule metabolites in animal models of liver failure and patients with liver failure. These methods help identify specific biomarkers for early diagnosis and clinical intervention. This article reviews recent advancements in metabolomics for the early diagnosis of liver failure, biomarker discovery, identification of TCM syndromes, and the application of TCM in treating liver failure, aiming to provide a basis for TCM-based diagnosis and treatment of liver failure.
7.Mechanism of action and potential value of the IRE1α/TRAF2/JNK pathway in the progression of acute liver failure
Haimei GUAN ; Kan ZHANG ; Weiyu CHEN ; Guobao LI ; Yangling ZENG ; Riyun ZHANG ; Tianwen WANG ; Baohua XIE ; Dewen MAO
Journal of Clinical Hepatology 2024;40(6):1281-1288
Acute liver failure(ALF)is one of the most critical liver diseases in clinical practice and seriously affects the life and health of Chinese people.Due to its high morbidity and mortality rates,unclear pathogenesis,and limited treatment methods,ALF has become a major problem that needs to be solved urgently in the field of liver diseases.In recent years,more and more studies have shown that endoplasmic reticulum stress is a key biological process in the progression of ALF,and the IRE1α/TRAF2/JNK pathway,as a part of endoplasmic reticulum stress signaling,plays a role in amplifying inflammatory response,promoting hepatocyte apoptosis,and inhibiting liver regeneration ability during the progression of diseases.As a traditional treasure of China,traditional Chinese medicine has become a research hotspot in search for effective prevention and treatment drugs for ALF from monomers of Chinese herbs.This article elaborates on the mechanism of action of the IRE1α/TRAF2/JNK pathway in the progression of ALF and summarizes the potential value of several monomers of Chinese herbs in regulating this pathway,such as salidroside,Fructus Broussonetiae,Fructus Psoraleae+Schisandra chinensis,baicalein,genipin,kaempferol,resveratrol,sea buckthorn polysaccharide extract,and luteol,in order to provide a reference for further research and clinical practice of ALF.
8.Quality of urodynamics: a national cross-sectional study in China.
Xiao ZENG ; Ziyuan XIA ; Liao PENG ; Jiapei WU ; Jiayi LI ; Jianhui YANG ; Juan CHEN ; Changqin JIANG ; Dewen ZHONG ; Yang SHEN ; Jumin NIU ; Xiao XIAO ; Li WEN ; Hong SHEN ; Deyi LUO
Chinese Medical Journal 2023;136(2):236-238
9.Short-term prognostic predictive value of deep-learning assisted quantitative myocardial contrast echocardiography in ST-elevated myocardial infarction after primary percutaneous coronary intervention
Mingqi LI ; Dewen ZENG ; Wenyue YUAN ; Yanxiang ZHOU ; Jinling CHEN ; Sheng CAO ; Hongning SONG ; Bo HU ; Jing CHEN ; Yuanting YANG ; Hao WANG ; Hongwen FEI ; Qing ZHOU
Chinese Journal of Ultrasonography 2023;32(7):572-582
Objective:To explore the prognostic predictive value of deep neural network (DNN) assisted myocardial contrast echocardiography (MCE) quantitative analysis of ST-elevated myocardial infarction (STEMI) patients after successful percutaneous coronary intervention(PCI).Methods:A retrospective analysis was performed in 97 STEMI patients with thrombolysis in myocardial infarction-3 flow in infarct vessel after primary PCI in Renmin Hospital of Wuhan University from June to November 2021. MCE was performed within 48 h after PCI. Patients were followed up to 120 days. The adverse events were defined as cardiac death, hospitalization for congestive heart failure, reinfarction, stroke and recurrent angina. The framework consisted of the U-net and hierarchical convolutional LSTMs. The plateau myocardial contrast intensity (A), micro-bubble rate constant (β), and microvascular blood flow (MBF) for all myocardial segments were obtained by the framework, and then underwent variability analysis. Patients were divided into low MBF group and high MBF group based on MBF values, the baseline characteristics and adverse events were compared between the two groups. Other variables included biomarkers, ventricular wall motion analysis, MCE qualitative analysis, and left ventricular ejection fraction. The relationship between various variables and prognosis was investigated using Cox regression analysis. The ROC curve was plotted to evaluate the diagnostic efficacy of the models, and the diagnostic efficacy of the models was compared using the integrated discrimination improvement index (IDI).Results:The time-cost for processing all 3 810 frames from 97 patients was 377 s. 92.89% and 7.11% of the frames were evaluated by an experienced echocardiographer as "good segmentation" and "correction needed". The correlation coefficients of A, β, and MBF ranged from 0.97 to 0.99 for intra-observer and inter-observer variability. During follow-up, 20 patients met the adverse events. Multivariate Cox regression analysis showed that for each increase of 1 IU/s in MBF of the infarct-related artery territory, the risk of adverse events decreased by 6% ( HR 0.94, 95% CI =0.91-0.98). There was a 4.5-fold increased risk of adverse events in the low MBF group ( HR 5.50, 95% CI=1.55-19.49). After incorporating DNN-assisted MCE quantitative analysis into qualitative analysis, the IDI for prognostic prediction was 15% (AUC 0.86, sensitivity 0.78, specificity 0.73). Conclusions:MBF of the area supplied by infarct-related artery after STEMI-PCI is an independent protective factor for short-term prognosis. The DNN-assisted MCE quantitative analysis is an objective, efficient, and reproducible method to evaluate microvascular perfusion. Assessment of culprit-MBF after PCI in STEMI patients adds independent short-term prognostic information over qualitative analysis.It has the potential to be a valuable tool for risk stratification and clinical follow-up.
10.Role of lysyl oxidase family in the development and progression of hepatocellular carcinoma
Xiaobin QIN ; Zulong LI ; Shenglan ZENG ; Liting TAN ; Yingyu LE ; Dewen MAO
Journal of Clinical Hepatology 2022;38(3):682-687
Lysyl oxidase (LOX) family is a group of copper-containing amine oxidases composed of LOX and LOX-like proteins (LOXL1, LOXL2, LOXL3, and LOXL4). It is overexpressed in tumor tissue and promotes tumor metastasis through covalent cross-linking of extracellular matrix, with the functions of cell growth control, tumor inhibition, senescence, and chemotaxis. In recent years, more and more evidence has shown that LOX family members play a key role in the pathogenesis of hepatocellular carcinoma (HCC), suggesting that they have great potential as therapeutic targets. This article reviews the role of LOX family members in the development and progression of HCC and the intervention effect of traditional Chinese medicine extracts on HCC by regulating LOX family, in order to provide a reference for further research on the prevention and treatment of HCC.

Result Analysis
Print
Save
E-mail