1.Development status and ethical challenges of artificial intelligence in traditional Chinese medicine
Jiaqing DAI ; Yuxuan JIANG ; Jingnan HU ; Liu YANG ; Lifang GUO
Chinese Medical Ethics 2025;38(2):173-178
In the context of the rapid development of 5G technology, the development of artificial intelligence (AI) in traditional Chinese medicine (TCM) faces new opportunities and challenges. Focusing on how to uphold tradition while innovating in the development of AI in TCM, starting from the current development status of AI in Chinese medicine, including the integration of four diagnostic methods, syndrome differentiation and treatment, auxiliary diagnosis and treatment, research and development of Chinese herbal medicine, prevention and treatment of diseases, knowledge inheritance, and other aspects, this paper discussed the support of policies and technical advancements, as well as development opportunities such as increased demand for health. Regarding machine ethics, data ethics, regulatory review, and other aspects, it also proposed some suggestions that the training algorithm should be improved to assist medical work; data ownership should be clarified to ensure data security; and an AI ethics committee should be set up to improve the review system, aiming to maximize the advantages of smart healthcare and accelerate the modernization of TCM for the benefit of patients and the service of human health.
2.Osteogenic ability and autophagy level between normal and inflammatory periodontal ligament stem cells
Jiaqi MAO ; Liru ZHAO ; Dongru YANG ; Yongqing HU ; Bowen DAI ; Shujuan LI
Chinese Journal of Tissue Engineering Research 2025;29(1):74-79
BACKGROUND:Inflammation affects the osteogenic differentiation of periodontal ligament stem cells,and the osteogenic ability and autophagy level of periodontal ligament stem cells are closely related.However,there are no relevant reports on whether inflammation affects the osteogenic ability and autophagy level of periodontal ligament stem cells at different stages of osteogenic differentiation. OBJECTIVE:To explore alkaline phosphatase expression and autophagy periodontal ligament stem cells levels in periodontitis and normal conditions. METHODS:Periodontal ligament stem cells from normal and periodontitis patients were isolated and cultured,and underwent Vimentin,pan-CK,and Stro-1 fluorescence staining.At 3,7,and 14 days of osteogenic differentiation,western blot assay was used to detect the protein expression levels of alkaline phosphatase,LC3B,Beclin1,and ATG5 in normal and inflammatory periodontal ligament stem cells.The mRNA expression levels of alkaline phosphatase,bone sialoprotein,osteocalcin,Runx2,LC3B,Beclin1,and ATG5 were detected by real-time PCR. RESULTS AND CONCLUSION:(1)Stro-1 was positive,Vimentin was positive,and pan CK was negative in periodontal ligament stem cells.(2)At 3,7,and 14 days after osteogenic differentiation,compared with normal periodontal ligament stem cells,the mineralization nodules formed by periodontal ligament stem cells from inflammatory sources were significantly reduced(P<0.01);the expression of alkaline phosphatase protein and mRNA was significantly lower(P<0.05);the mRNA expression levels of bone sialoprotein,osteocalcin,and Runx2 were significantly decreased(P<0.05).(3)At 7 and 14 days after osteogenic differentiation,compared with normal periodontal ligament stem cells,the expression levels of ATG5,LC3B,and Beclin1 proteins and mRNA of periodontal ligament stem cells were downregulated(P<0.05).These findings suggest that inflammation reduces the activity of periodontal ligament stem cells in mineralizing nodule formation and the expression of alkaline phosphatase and weakens the autophagy potential of periodontal ligament stem cells at 7 and 14 days after osteogenic differentiation.
3.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
4.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
5.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
6.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
7.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
8.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.
9.Synthetic MRI Combined With Clinicopathological Characteristics for Pretreatment Prediction of Chemoradiotherapy Response in Advanced Nasopharyngeal Carcinoma
Siyu CHEN ; Jiankun DAI ; Jing ZHAO ; Shuang HAN ; Xiaojun ZHANG ; Jun CHANG ; Donghui JIANG ; Heng ZHANG ; Peng WANG ; Shudong HU
Korean Journal of Radiology 2025;26(2):135-145
Objective:
To explore the feasibility of synthetic magnetic resonance imaging (syMRI) combined with clinicopathological characteristics for the pre-treatment prediction of chemoradiotherapy (CRT) response in advanced nasopharyngeal carcinoma (ANPC).
Materials and Methods:
Patients with ANPC treated with CRT between September 2020 and June 2022 were retrospectively enrolled and categorized into response group (RG, n = 95) and non RGs (NRG, n = 32) based on the Response Evaluation Criteria in Solid Tumors (RECIST) 1.1. The quantitative parameters from pre-treatment syMRI (longitudinal [T1] and transverse [T2] relaxation times and proton density [PD]), diffusion-weighted imaging (apparent diffusion coefficient [ADC]), and clinicopathological characteristics were compared between RG and NRG. Logistic regression analysis was applied to identify parameters independently associated with CRT response and to construct a multivariable model. The areas under the receiveroperating characteristic curve (AUC) for various diagnostic approaches were compared using the DeLong test.
Results:
The T1, T2, and PD values in the NRG were significantly lower than those in the RG (all P < 0.05), whereas no significant difference was observed in the ADC values between these two groups. Clinicopathological characteristics (Epstein–Barr virus [EBV]-DNA level, lymph node extranodal extension, clinical stage, and Ki-67 expression) exhibited significant differences between the two groups. Logistic regression analysis showed that T1, PD, EBV-DNA level, clinical stage, and Ki-67 expression had significant independent relationships with CRT response (all P < 0.05). The multivariable model incorporating these five variables yielded AUC, sensitivity, and specificity values of 0.974, 93.8% (30/32), and 91.6% (87/95), respectively.
Conclusion
SyMRI may be used for the pretreatment prediction of CRT response in ANPC. The multivariable model incorporating syMRI quantitative parameters and clinicopathological characteristics, which were independently associated with CRT response, may be a new tool for the pretreatment prediction of CRT response.
10.Multi-Parameter MRI for Evaluating Glymphatic Impairment and White-Matter Abnormalities and Discriminating Refractory Epilepsy in Children
Lu QIU ; Miaoyan WANG ; Surui LIU ; Bo PENG ; Ying HUA ; Jianbiao WANG ; Xiaoyue HU ; Anqi QIU ; Yakang DAI ; Haoxiang JIANG
Korean Journal of Radiology 2025;26(5):485-497
Objective:
To explore glymphatic impairment in pediatric refractory epilepsy (RE) using multi-parameter magnetic resonance imaging (MRI), assess its relationship with white-matter (WM) abnormalities and clinical indicators, and preliminarily evaluate the performance of multi-parameter MRI in discriminating RE from drug-sensitive epilepsy (DSE).
Materials and Methods:
We retrospectively included 70 patients with DSE (mean age, 9.7 ± 3.5 years; male:female, 37:33) and 26 patients with RE (9.0 ± 2.9 years; male:female, 12:14). The diffusion tensor imaging analysis along the perivascular space (DTI-ALPS) index as well as fractional anisotropy (FA), mean diffusivity (MD), and nodal efficiency values were measured and compared between patients with RE and DSE. With sex and age as covariables, differences in the FA and MD values were analyzed using tract-based spatial statistics, and nodal efficiency was analyzed using a linear model. Pearson’s partial correlation was analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the discrimination performance of the MRI-based machine-learning models through five-fold cross-validation.
Results:
In the RE group, FA decreased and MD increased in comparison with the corresponding values in the DSE group, and these differences mainly involved the callosum, right and left corona radiata, inferior and superior longitudinal fasciculus, and posterior thalamic radiation (threshold-free cluster enhancement, P < 0.05). The RE group also showed reduced nodal efficiency, which mainly involved the limbic system, default mode network, and visual network (false discovery rate, P < 0.05), and significantly lower DTI-ALPS index (F = 2.0, P = 0.049). The DTI-ALPS index was positively correlated with FA (0.25 ≤ r ≤ 0.32) and nodal efficiency (0.22 ≤ r ≤ 0.37), and was negatively correlated with the MD (-0.24 ≤ r≤ -0.34) and seizure frequency (r = -0.47). A machine-learning model combining DTI-ALPS, FA, MD, and nodal efficiency achieved a cross-validated ROC curve area of 0.83 (sensitivity, 78.2%; specificity, 84.8%).
Conclusion
Pediatric patients with RE showed impaired glymphatic function in comparison with patients with DSE, which was correlated with WM abnormalities and seizure frequency. Multi-parameter MRI may be feasible for distinguishing RE from DSE.

Result Analysis
Print
Save
E-mail