1.Mechanism of Kaixuan Jiedu Core Prescription in Regulating PTGS2 to Improve Skin Lesions in Psoriasis Mouse Models
Xue XIAO ; Liping KANG ; Dan DAI ; Yidi MA ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):49-59
ObjectiveTo identify the active constituents of Kaixuan Jiedu core prescription (KXJD) and investigate its effective components and therapeutic targets in the treatment of common psoriasis
2.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
3.Mechanism of Kaixuan Jiedu Core Prescription in Regulating PTGS2 to Improve Skin Lesions in Psoriasis Mouse Models
Xue XIAO ; Liping KANG ; Dan DAI ; Yidi MA ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):49-59
ObjectiveTo identify the active constituents of Kaixuan Jiedu core prescription (KXJD) and investigate its effective components and therapeutic targets in the treatment of common psoriasis
4.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
5.Boosting synergism of chemo- and immuno-therapies via switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis by bisphosphonate coordination lipid nanogranules.
Ge SONG ; Minghui LI ; Shumin FAN ; Mengmeng QIN ; Bin SHAO ; Wenbing DAI ; Hua ZHANG ; Xueqing WANG ; Bing HE ; Qiang ZHANG
Acta Pharmaceutica Sinica B 2024;14(2):836-853
Conventional chemotherapy based on cytotoxic drugs is facing tough challenges recently following the advances of monoclonal antibodies and molecularly targeted drugs. It is critical to inspire new potential to remodel the value of this classical therapeutic strategy. Here, we fabricate bisphosphonate coordination lipid nanogranules (BC-LNPs) and load paclitaxel (PTX) to boost the chemo- and immuno-therapeutic synergism of cytotoxic drugs. Alendronate in BC-LNPs@PTX, a bisphosphonate to block mevalonate metabolism, works as both the structure and drug constituent in nanogranules, where alendronate coordinated with calcium ions to form the particle core. The synergy of alendronate enhances the efficacy of paclitaxel, suppresses tumor metastasis, and alters the cytotoxic mechanism. Differing from the paclitaxel-induced apoptosis, the involvement of alendronate inhibits the mevalonate metabolism, changes the mitochondrial morphology, disturbs the redox homeostasis, and causes the accumulation of mitochondrial ROS and lethal lipid peroxides (LPO). These factors finally trigger the ferroptosis of tumor cells, an immunogenic cell death mode, which remodels the suppressive tumor immune microenvironment and synergizes with immunotherapy. Therefore, by switching paclitaxel-induced apoptosis to mevalonate metabolism-triggered ferroptosis, BC-LNPs@PTX provides new insight into the development of cytotoxic drugs and highlights the potential of metabolism regulation in cancer therapy.
6.Factors affecting nosocomial death in elderly patients with COVID-19 and construction of a risk predictive model
Jingrong DAI ; Bao XIAO ; Lin LI ; Jiangying HU ; Bin LIU
Basic & Clinical Medicine 2024;44(1):92-97
Objective To study the factors affecting hospital death in elderly patients with novel coronavirus infec-tion/disease 2019(COVID-19),and to build a risk prediction model.Methods According to the diagnostic criteria of Diagnosis and Treatment Protocol for COVID-19 Infection(Trial 10th Edition).Totally 775 elderly patients(≥60 years old)diagnosed as COVID-19 infection in the emergency department and fever clinic of the First Hospital of Changsha were selected as the research objects.General data and serum biomarkers of patients were collected.After treatment,the patients'data were divided into survival group and hospital death group.Binary Logistic regres-sion was used to screen the independent influencing factors of death,and ROC curve was used to analyze the pre-dictive value of related indicators on hospital death.Results After treatment,712 patients(91.9%)survived and 63 patients(8.3%)died in hospital.Binary Logistic regression analysis showed that:≥90 years old[OR=5.065,95%CI(1.427,17.974)],type 2 diabetes mellitus[OR= 3.757,95%CI(1.649,8.559)],COPD[OR= 5.625,95%CI(2.357,13.421)],monocyte ratio[OR=0.908,95%CI(0.857,0.963)],plasma fibringen[OR=1.376,95%CI(1.053,1.800)]and lactate dehydrogenase[OR=1.005,95%CI(1.001,o1.008)]were independent factors of in-hospital death(P<0.05).The predictive value of diabetes mellitus+COPD+age+monocyte ratio+plasma fibrinogen+lactate dehydrogenase was proved in hospital death from COVID-19 infected patients:the area under the curve(AUC)was 0.883(95%CI:0.827,0.940,P<0.001),the critical value≥0.710 suggested the risk of death in hospital,the specificity was 0.851,the sensitivity was 0.857.Conclusions The hospital mortality of the elderly after COVID-19 infection is higher and closely related to type 2 diabetes,COPD,monocyte ratio,plasma fibrinogen and lactate dehydrogenase.
7.The relationship between activities of daily living and mental health in community elderly people and the mediating role of sleep quality
Heng-Yi ZHOU ; Jing LI ; Dan-Hua DAI ; Yang LI ; Bin ZHANG ; Rong DU ; Rui-Long WU ; Jia-Yan JIANG ; Yuan-Man WEI ; Jing-Rong GAO ; Qi ZHAO
Fudan University Journal of Medical Sciences 2024;51(2):143-150
Objective To explore the relationship and internal path between activities of daily living(ADL),sleep quality and mental health of community elderly people in Shanghai.Methods A questionnaire survey was conducted among community residents aged 60 years and older seeing doctors in community health care center of five streets in Shanghai during Sept to Dec,2021 using convenience sampling.Activities of Daily Living(ADL),Pittsburgh Sleep Quality Index(PSQI)and 10-item Kessler Psychological Distress Scale(K10)were adopted in the survey.Single factor analysis,correlation analysis and multiple linear regression were used to analyze the data.The effect relationship between the variables was tested using Bootstrap's mediated effects test.Results A total of 1 864 participants were included in the study.The average score was 15.53±4.47 for ADL,5.60±3.71 for PSQI and 15.50±6.28 for K10.The rate of ADL impairment,poor sleep quality,poor and very poor mental health of the elderly were 23.6%,27.3%,11.9%and 4.9%,respectively.ADL and sleep quality were all positively correlated with mental health(r=0.321,P<0.001;r=0.466,P<0.001);ADL was positively correlated with sleep quality(r=0.294,P<0.001).Multiple linear results of factors influencing mental health showed that ADL(β= 0.457,95%CI:0.341-0.573),sleep quality(β =0.667,95%CI:0.598-0.737)and mental health were positively correlated(P<0.001).Sleep quality partially mediated the relationship between ADL and mental health(95%CI:0.078-0.124)with an effect size of 33.0%.Conclusion Sleep quality is a mediator between ADL and mental health among community elderly people.Improving ADL and sleep quality may improve mental health in the population.
8.Establishment of a clinical department operation evaluation index system based on delphi method
Yue QIU ; Qingshan GENG ; Bin DAI ; Wei JIANG ; Yanhui KUANG ; Xiaorou XIE
Modern Hospital 2024;24(2):239-242
The high-quality development requirements for public hospitals,national examination orientations,and DIP medical insurance payment reforms present significant challenges to the refined management of public hospitals.Therefore,it is essential to enhance the operational management of these institutions.This paper aims to develop an operation evaluation index system for clinical departments using the Delphi method for assessing the efficiency of resource input and output across various clinical departments.It provides a scientific basis for decision-making regarding resource allocation,transformation towards re-fined management,and the enhancement of operational guidance for departments.
9.Adult carotid body tumors in Northwest China: a multicenter, retrospective cross-sectional study
Wenyu XIE ; Hongchen ZHANG ; Yuan FENG ; Zheming YUE ; Lei ZHANG ; Shuhui DAI ; Jun REN ; Chunming XIAN ; Jie ZHOU ; Bin ZHANG ; Xia LI
Chinese Journal of Neuromedicine 2024;23(1):34-41
Objective:To analyze the clinical and epidemiological characteristics of adult carotid body tumors (CBTs) in Northwest China to provide references for early diagnosis and treatment of CBTs.Methods:A multicenter, retrospective, non-intervention epidemiological investigation was conducted on adult CBTs patients who were hospitalized from January 1, 2011 to June 30, 2023 in 7 Class A tertiary hospitals in Northwest China (Departments of Neurosurgery, First Affiliated Hospital of Air Force Medical University, Second Affiliated Hospital of Lanzhou University, People's Hospital of Gansu Province, 940 th Hospital of PLA Joint Logistic Support Force, People's Hospital of Qinghai Province, General Hospital of Ningxia Medical University, People's Hospital of Ningxia Hui Autonomous Region). Medical records were collected in these patients, and they were divided into 2 groups according to their average altitude residence: high altitude group (≥1 500 m) and low altitude group (<1 500 m); meanwhile, these patients were divided into Shamblin type I, type II and type III groups according to Shamblin classification criteria; differences in general data and clinical features among patients from different altitude groups or Shamblin subgroups were compared. Independent influencing factors for Shamblin type III CBTs were analyzed by multivariate ordered Logistic regression. Results:(1) A total of 359 patients were enrolled in the study, including 276 females and 83 males, aged (48.80±12.07) years; 211 patients were into the high altitude group and 148 into the low altitude group; 165 patients were into Shamblin type I group, 146 into Shamblin type II group, and 48 into Shamblin type III group. (2) Compared with those in the low altitude group, patients in the high altitude group had higher proportion of females, older age, lower proportion of Han nationality, higher proportion of Shamblin type I, smaller tumor volume, lower platelet count, higher red blood cell count, hematocrit, hemoglobin level, platelet distribution width and mean platelet volume, and higher large platelet percentage, with significant differences ( P<0.05). (3) Compared with those in the Shamblin type I group, patients in the Shamblin type III group had younger age, lower resident altitude, larger tumor volume, longer time interval from onset to diagnosis, higher proportion of unintentional tumor discovery, larger volume of intraoperative blood loss, lower hemoglobin level, hematocrit, mean erythrocyte volume, and mean hemoglobin concentration, decreased erythrocyte distribution width variable coefficient, and increased platelet count, with significant differences ( P<0.05). Compared with those in the Shamblin type II group, patients in Shamblin type III group had younger age, larger tumor volume, longer time interval from onset to diagnosis, larger volume of intraoperative blood loss, lower hemoglobin, hematocrit and mean erythrocyte volume, higher erythrocyte distribution width variable coefficient and platelet count, with significant differences ( P<0.05). (4) Age ( OR=0.960, 95% CI: 0.942-0.977, P<0.001), residence altitude ( OR=0.992, 95% CI: 0.990-0.999, P=0.020) and time interval from onset to diagnosis ( OR=1.009, 95% CI: 1.005-1.014, P<0.001) were independent influencing factors for Shamblin type III CBTs. Conclusions:More females than males are noted in patients with adult CBTs in Northwest China, and more CBTs patients live at high altitude, with Shamblin type I enjoying the highest proportion. More female and old patients lived at high altitude is noted than those lived at low altitude; patients with Shamblin type III have the youngest age, lowest altitude, and longest time interval from onset to diagnosis. CBTs patients with young age, low residence altitude, and long time interval from onset to diagnosis are more likely to develop Shamblin type III.
10.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.

Result Analysis
Print
Save
E-mail