1.Research progress in mRNA drug modification and delivery systems.
Journal of Zhejiang University. Medical sciences 2023;52(4):439-450
Messenger RNA (mRNA) has shown tremendous potential in disease prevention and therapy. The clinical application requires mRNA with enhanced stability and high translation efficiency, ensuring it not to be degraded by nucleases and targeting to specific tissues and cells. mRNA immunogenicity can be reduced by nucleotide modification, and translation efficiency can be enhanced by codon optimization. The 5´ capping structure and 3´ poly A increase mRNA stability, and the addition of 5' and 3' non-translational regions regulate mRNA translation initiation and protein production. Nanoparticle delivery system protects mRNA from degradation by ubiquitous nucleases, enhances mRNA concentration in circulation and assists it cytoplasmic entrance for the purpose of treatment and prevention. Here, we review the recent advances of mRNA technology, discuss the methods and principles to enhance mRNA stability and translation efficiency; summarize the requirements involved in designing mRNA delivery systems with the potential for industrial translation and biomedical application. Furthermore, we provide insights into future directions of mRNA therapeutics to meet the needs for personalized precision medicine.
RNA, Messenger/genetics*
;
Cytoplasm
;
Nanoparticles
;
Precision Medicine
2.Establishment of a CFTR-based detection method for the second messenger cAMP in the cytoplasm.
Ming-da WU ; Xun-Ying LIU ; Jian-Nan FENG ; Xue-Wei GAO ; Feng HAO ; Jun-Tao GAO
Chinese Journal of Applied Physiology 2022;38(1):79-84
Objective: To establish a detection method based on Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) that can sensitively detect the second messenger cyclic AMP (cAMP) in the cytoplasm. Methods: The eukaryotic expression vectors of CFTR and YFP-H148Q / I152L were constructed respectively. FRT cells co-expressing CFTR and YFP-H148Q / I152L were obtained by liposome transfection. The expression of CFTR and YFP-H148Q / I152L in FRT cells was observed by an inverted fluorescence microscopy, and flow cytometry was used to detect the purity of cells; The cell model was identified by the fluorescence quenching kinetics test. The validation of the cell model which could screen CFTR modulators was verified by the fluorescence quenching kinetics experiments. The radioimmunoassay was used to detect the cAMP concentration in cytoplasm after adding CFTR activator. Results: The results of the inverted fluorescence microscope showed that CFTR was expressed in the cell membrane and YFP-H148Q / I152L was expressed in the cytoplasm of FRT cells. The FRT cell model stably co-expressing ANO1 and YFP-H148Q / I152L was successfully constructed. The model could screen CFTR modulators, and the slope of fluorescence change and the concentration of CFTR modulators were in a dose-dependent manner. The slope of the fluorescence could reflect the cAMP concentration in the cytoplasm. The cell model could sensitively detect the intracellular cAMP concentration. Conclusion: The cell model could efficiently and sensitively detect the second messenger cAMP concentration in the cytoplasm, and it provided a simple and efficient method for the study of other targets associated cAMP signal.
Cyclic AMP
;
Cystic Fibrosis Transmembrane Conductance Regulator
;
Cytoplasm
;
Second Messenger Systems
3.Effect of dexamethasone on the expression of Dynein heavy chain and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured
Lin CHENG ; Zi-Yun XIE ; Jian LI ; Tao BO
Chinese Journal of Contemporary Pediatrics 2021;23(6):639-644
OBJECTIVE:
To study the effect of dexamethasone (DEX) on the expression of Dynein heavy chain (DHC) and Dynactin in the cytoplasm of fetal rat cerebral cortical neurons cultured
METHODS:
Primary cerebral cortical neurons of fetal rats were cultured
RESULTS:
There was no significant difference in the mRNA expression levels of DHC and Dynactin among the three groups at all time points (
CONCLUSIONS
DEX affects the protein expression of DHC and Dynactin in the fetal rat cerebral cortical neurons cultured
Animals
;
Cytoplasm
;
Dexamethasone/pharmacology*
;
Dynactin Complex/genetics*
;
Dyneins
;
Neurons
;
Rats
4.Research progress of phase separation of intracellular biological macromolecules.
Hui LI ; Qingxi LIU ; Xinjun LI ; Qiang JIAO ; Wenjian MA
Chinese Journal of Biotechnology 2020;36(7):1261-1268
The phenomenon of phase separation of intracellular biological macromolecules is an emerging research field that has received great attention in recent years. As an aggregation and compartment mechanism of cell biochemical reactions, it widely exists in nature and participates in important physiological processes such as gene transcription and regulation, as well as influences organism's response to external stimuli. Disequilibrium of phase separation may lead to the occurrence of some major diseases. Researchers in cross-cutting fields are trying to examine dementia and other related diseases from a new perspective of phase separation, exploring its molecular mechanism and the potential possibility of intervention and treatment. This review intends to introduce the latest research progress in this field, summarize the major research directions, biochemical basis, its relationship with disease occurrence, and giving a future perspective of key problems to focus on.
Animals
;
Chemistry Techniques, Analytical
;
trends
;
Cytoplasm
;
chemistry
;
metabolism
;
Humans
;
Macromolecular Substances
;
isolation & purification
;
Research
;
trends
5.The 40-91 aa sequence of porcine epidemic diarrhea virus ORF3 protein is the key structural domain controlling its location in cytoplasm.
Bingqing CHEN ; Mei SHEN ; Fusheng SI ; ShiJuan DONG ; RuiSong YU ; ChunFang XIE ; Zhen LI
Chinese Journal of Biotechnology 2020;36(6):1113-1125
ORF3 protein, the single accessory protein encoded by porcine epidemic diarrhea virus (PEDV), is related to viral pathogenicity. In order to determine the cytoplasmic location signal of PEDV ORF3, we constructed a series of recombinant plasmids carrying full-length or truncated segments of PEDV DR13 ORF3 protein. When the acquired plasmids were transfected into Vero cells, expression and distribution of the EGFP-fused full-length ORF3 protein and its truncated forms in the cells were observed by laser confocal microscopy. The results showed that ORF3 protein or their truncated forms containing 40-91 aa segment including two transmembrane domains were localized in the cytoplasm, whereas ORF3 truncated peptides without the 40-91 aa segment were distributed in the whole cell (in both cytoplasm and nucleus). This suggests that the 40-91 aa is the key structural domain determining cytoplasmic location of PEDV ORF3 protein. The discovery provides reference for further clarifying intracellular transport and biological function of PEDV ORF3 protein.
Amino Acid Sequence
;
Animals
;
Chlorocebus aethiops
;
Coronavirus Infections
;
virology
;
Cytoplasm
;
virology
;
Porcine epidemic diarrhea virus
;
genetics
;
Protein Domains
;
Swine
;
Vero Cells
;
Viral Proteins
;
chemistry
;
metabolism
6.Characteristics of Renal Cell Carcinoma Harboring TPM3-ALK Fusion
Chang Gok WOO ; Seok Jung YUN ; Seung Myoung SON ; Young Hyun LIM ; Ok Jun LEE
Yonsei Medical Journal 2020;61(3):262-266
The World Health Organization 2016 edition assigned anaplastic lymphoma kinase (ALK) rearrangement-associated renal cell carcinoma (ALK-RCC) as an emerging renal tumor entity. Identifying ALK-RCC is important because ALK inhibitors have been shown to be effective in treatment. Here, we report the case of a 14-year-old young man with ALK-RCC. Computed tomography revealed a well-demarcated 5.3-cm enhancing mass at the upper pole of the left kidney. There was no further history or symptoms of the sickle-cell trait. The patient underwent left radical nephrectomy. Pathologically, the mass was diagnosed as an unclassified RCC. Targeted next-generation sequencing identified a TPM3-ALK fusion gene. The present report and literature review demonstrate that TPM3-ALK RCC may be associated with distinct clinicopathological features. Microscopically, the tumors showed diffuse growth and tubulocystic changes with inflammatory cell infiltration. Tumor cells were dis-cohesive and epithelioid with abundant eosinophilic cytoplasm and cytoplasmic vacuoles. If morphological features and TFE3 expression are present in adolescent and young patients, molecular tests for ALK translocation should be performed. This awareness is critically important, because ALK rearrangement confers sensitivity to ALK inhibitors.
Adolescent
;
Carcinoma, Renal Cell
;
Cytoplasm
;
Eosinophils
;
Gene Rearrangement
;
Humans
;
Kidney
;
Lymphoma
;
Nephrectomy
;
Phosphotransferases
;
Vacuoles
;
World Health Organization
7.Subcellular localization of GTPase of immunity-associated protein 2.
Hong Quan QIN ; You ZHENG ; Man Na WANG ; Zheng Rong ZHANG ; Zu Biao NIU ; Li MA ; Qiang SUN ; Hong Yan HUANG ; Xiao Ning WANG
Journal of Peking University(Health Sciences) 2020;52(2):221-226
OBJECTIVE:
To analyze the subcellular localization of GTPase of immunity-associated protein 2 (GIMAP2) for the further functional study.
METHODS:
In the study, we first obtained the protein sequences of GTPase of immunity-associated protein 2 (GIMAP2) from National Center for Biotechnology Information (NCBI) database, and then performed a prediction analysis of its transmembrane structure, nuclear localization signal (NLS), nuclear export signal (NES) and subcellular localization through bioinformatics online tools. GIMAP2 gene amplified by PCR was inserted into the expression vector pQCXIP-mCherry-N1 and positive clones were selected by ampicillin resistance. After using methods to extract and purify, the sequenced recombinant plasmid pQCXIP-GIMAP2-mCherry, together with the retroviral packaging plasmids VSVG and Gag/pol, was transferred into HEK293FT cells by liposomes for virus packaging. The virus supernatant was collected 48 h after transfection and directly infected the human breast cancer cell line MDA-MB-436. Immunofluorescence staining was constructed to detect the localization of endogenous and exogenous GIMAP2 in MDA-MB-436 cells. Meanwhile, green fluorescent chemical dyes were used to label mitochondria, endoplasmic reticulum, and lipid droplets in living MDA-MB-436 cells stably expressing the GIMAP2-mCherry fusion protein. Images for the three dye-labeled organelles and GIMAP2-mCherry fusion protein were captured by super-resolution microscope N-SIM.
RESULTS:
Bioinformatics analysis data showed that GIMAP2 protein composed of 337 amino acids might contain two transmembrane helix (TM) structures at the carboxyl terminus, of which TMs were estimated to contain 40-41 expected amino acids, followed by the residual protein structures toward the cytoplasmic side. NES was located at the 279-281 amino acids of the carboxyl terminus whereas NLS was not found. GIMAP2 might locate in the lumen of the endoplasmic reticulum. Sequencing results indicated that the expression vector pQCXIP-GIMAP2-mCherry was successfully constructed. Fluorescent staining confirmed that GIMAP2-mCherry fusion protein, co-localized well with endogenous GIMAP2, expressed successfully in the endoplasmic reticulum and on the surface of lipid droplets in MDA-MB-436 cells.
CONCLUSION
GIMAP2 localizes in the endoplasmic reticulum and on the surface of LDs, suggesting potential involvement of GIMAP2 in lipid metabolism.
Amino Acid Sequence
;
Cytoplasm
;
GTP Phosphohydrolases
;
Humans
;
Membrane Proteins
;
Nuclear Export Signals
;
Nuclear Localization Signals
;
Recombinant Fusion Proteins
;
Transfection
8.An Autopsy Proven Case of CSF1R-mutant Adult-onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia (ALSP) with Premature Ovarian Failure
Seong Ik KIM ; Beomseok JEON ; Jeongmo BAE ; Jae Kyung WON ; Han Joon KIM ; Jeemin YIM ; Yun Joong KIM ; Sung Hye PARK
Experimental Neurobiology 2019;28(1):119-129
Adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP) is a progressive degenerative white matter disorder caused by mutations in the tyrosine kinase domain of the CSF1R gene. ALSP is often misdiagnosed as other diseases due to its rarity and various clinical presentations such as Parkinsonism, pyramidal signs, cognitive impairment and/or psychiatric symptoms. We describe an autopsy case of ALSP with a CSF1R mutation. A 61-year-old woman presented insidious-onset gait difficulty for 12 years since her age of 49, and premature ovarian failure since her age of 35. At initial hospital visit, brain magnetic resonance imaging revealed hydrocephalus. Initially, Parkinson's syndrome was diagnosed, and she was prescribed L-dopa/carbidopa because of spasticity and rigidity of extremities, which had worsened. Subsequently, severe neuropsychiatric symptoms and cognitive impairment developed and radiologically, features of leukoencephalopathy or leukodystrophy were detected. She showed a down-hill course and died, 12 years after initial diagnosis. At autopsy, the brain showed severe symmetric atrophy of bilateral white matter, paper-thin corpus callosum, thin internal capsule, and marked hydrocephalus. Microscopically, diffuse loss of white matter, relatively preserved subcortical U-fibers, and many eosinophilic bulbous neuroaxonal spheroids were noted, but there was no calcification. Pigmented glia with brown cytoplasmic pigmentation were readily found in the white matter, which were positive for Periodic acid-Schiff, p62, and CD163 stains, but almost negative for CD68. Whole-exome and Sanger sequencing revealed a CSF1R mutation (c.2539G>A, p.Glu847Lys) which was reported in prior one ALSP case. This example demonstrates that ALSP could be associated with premature ovarian failure.
Atrophy
;
Autopsy
;
Axons
;
Brain
;
Cognition Disorders
;
Coloring Agents
;
Corpus Callosum
;
Cytoplasm
;
Diagnosis
;
Eosinophils
;
Extremities
;
Female
;
Gait
;
Humans
;
Hydrocephalus
;
Internal Capsule
;
Leukoencephalopathies
;
Magnetic Resonance Imaging
;
Middle Aged
;
Muscle Spasticity
;
Neuroglia
;
Parkinsonian Disorders
;
Pigmentation
;
Primary Ovarian Insufficiency
;
Protein-Tyrosine Kinases
;
White Matter
9.Physical and Functional Interaction between 5-HT₆ Receptor and Nova-1
Soon Hee KIM ; Misun SEO ; Hongik HWANG ; Dong Min MOON ; Gi Hoon SON ; Kyungjin KIM ; Hyewhon RHIM
Experimental Neurobiology 2019;28(1):17-29
5-HT₆ receptor (5-HT₆R) is implicated in cognitive dysfunction, mood disorder, psychosis, and eating disorders. However, despite its significant role in regulating the brain functions, regulation of 5-HT₆R at the molecular level is poorly understood. Here, using yeast two-hybrid assay, we found that human 5-HT₆R directly binds to neuro-oncological ventral antigen 1 (Nova-1), a brain-enriched splicing regulator. The interaction between 5-HT₆R and Nova-1 was confirmed using GST pull-down and co-immunoprecipitation assays in cell lines and rat brain. The splicing activity of Nova-1 was decreased upon overexpression of 5-HT₆R, which was examined by detecting the spliced intermediates of gonadotropin-releasing hormone (GnRH), a known pre-mRNA target of Nova-1, using RT-PCR. In addition, overexpression of 5-HT₆R induced the translocation of Nova-1 from the nucleus to cytoplasm, resulting in the reduced splicing activity of Nova-1. In contrast, overexpression of Nova-1 reduced the activity and the total protein levels of 5-HT₆R. Taken together, these results indicate that when the expression levels of 5-HT₆R or Nova-1 protein are not properly regulated, it may also deteriorate the function of the other.
Animals
;
Brain
;
Cell Line
;
Cytoplasm
;
Eating
;
Gonadotropin-Releasing Hormone
;
Humans
;
Immunoprecipitation
;
Mood Disorders
;
Psychotic Disorders
;
Rats
;
RNA Precursors
;
RNA-Binding Proteins
;
Serotonin
;
Two-Hybrid System Techniques
10.Tweety-homolog (Ttyh) Family Encodes the Pore-forming Subunits of the Swelling-dependent Volume-regulated Anion Channel (VRAC(swell)) in the Brain
Young Eun HAN ; Jea KWON ; Joungha WON ; Heeyoung AN ; Minwoo Wendy JANG ; Junsung WOO ; Je Sun LEE ; Min Gu PARK ; Bo Eun YOON ; Seung Eun LEE ; Eun Mi HWANG ; Jae Young JUNG ; Hyungju PARK ; Soo Jin OH ; C Justin LEE
Experimental Neurobiology 2019;28(2):183-215
In the brain, a reduction in extracellular osmolality causes water-influx and swelling, which subsequently triggers Cl⁻- and osmolytes-efflux via volume-regulated anion channel (VRAC). Although LRRC8 family has been recently proposed as the pore-forming VRAC which is activated by low cytoplasmic ionic strength but not by swelling, the molecular identity of the pore-forming swelling-dependent VRAC (VRAC(swell)) remains unclear. Here we identify and characterize Tweety-homologs (TTYH1, TTYH2, TTYH3) as the major VRAC(swell) in astrocytes. Gene-silencing of all Ttyh1/2/3 eliminated hypo-osmotic-solution-induced Cl⁻ conductance (I(Cl,swell)) in cultured and hippocampal astrocytes. When heterologously expressed in HEK293T or CHO-K1 cells, each TTYH isoform showed a significant I(Cl,swell) with similar aquaporin-4 dependency, pharmacological properties and glutamate permeability as I(Cl,swell) observed in native astrocytes. Mutagenesis-based structure-activity analysis revealed that positively charged arginine residue at 165 in TTYH1 and 164 in TTYH2 is critical for the formation of the channel-pore. Our results demonstrate that TTYH family confers the bona fide VRAC(swell) in the brain.
Arginine
;
Astrocytes
;
Brain
;
Cytoplasm
;
Glutamic Acid
;
Humans
;
Osmolar Concentration
;
Permeability

Result Analysis
Print
Save
E-mail