1.Hyperosmotic stress and perfusion culture strategies increase the yield of recombinant adenoviral vector produced by HEK 293 cells.
Zhuoxi ZHANG ; Zhonghu BAI ; Guangyin LIU ; Jianqi NIE ; Yankun YANG
Chinese Journal of Biotechnology 2023;39(8):3364-3378
With various diseases ravaging internationally, the demands for recombinant adenoviral vector (Adv) vaccines have increased dramatically. To meet the demand for Adv vaccine, development of a new cell culture process is an effective strategy. Applying hyperosmotic stress in cells before virus infection could increase the yield of Adv in batch culture mode. Emerging perfusion culture can significantly increase the yield of Adv as well. Therefore, combining the hyperosmotic stress process with perfusion culture is expected to improve the yield of Adv at high cell density. In this study, a shake flask combined with a semi-perfusion culture was used as a scaled-down model for bioreactor perfusion culture. Media with osmotic pressure ranging from 300 to 405 mOsm were used to study the effect of hyperosmotic stress on cell growth and Adv production. The results showed that using a perfusion culture process with a hyperosmotic pressure medium (370 mOsm) during the cell growth phase and an isosmotic pressure medium (300 mOsm) during the virus production phase effectively increased the yield of Adv. This might be due to the increased expression of HSP70 protein during the late phases of virus replication. The Adv titer in a bioreactor with such a process reached 3.2×1010 IFU/mL, three times higher than that of the traditional perfusion culture process. More importantly, this is the first time that a strategy of combining the hyperosmotic stress process with perfusion culture is applied to the production of Adv in HEK 293 cells. It also reveals the reason why the hyperosmotic stress process increased the yield of Adv, which may facilitate the process optimization of for producing other Adv in HEK 293 cells.
Humans
;
HEK293 Cells
;
Genetic Vectors/genetics*
;
Batch Cell Culture Techniques
;
Bioreactors
;
Perfusion
2.Optimization and application of caprylic acid precipitation in the purification of monoclonal antibody.
Chinese Journal of Biotechnology 2023;39(9):3757-3771
In response to the market demand for therapeutic antibodies, the upstream cell culture scale and expression titer of antibodies have been significantly improved, while the production efficiency of downstream purification process is relatively fall behind, and the downstream processing capacity has become a bottleneck limiting antibody production throughput. Using monoclonal antibody mab-X as experimental material, we optimized the caprylic acid (CA) precipitation process conditions of cell culture fluid and low pH virus inactivation pool, and studied two applications of using CA treatment to remove aggregates and to inactivate virus. Based on the lab scale study, we carried out a 500 L scale-up study, where CA was added to the low pH virus inactivation pool for precipitation, and the product quality and yield before and after precipitation were detected and compared. We found that CA precipitation significantly reduced HCP residuals and aggregates both before and after protein A affinity chromatography. In the aggregate spike study, CA precipitation removed about 15% of the aggregates. A virus reduction study showed complete clearance of a model retrovirus during CA precipitation of protein A purified antibody. In the scale-up study, the depth filtration harvesting, affinity chromatography, low pH virus inactivation, CA precipitation and depth filtration, and cation exchange chromatography successively carried out. The mixing time and stirring speed in the CA precipitation process significantly affected the CA precipitation effect. After CA precipitation, the HCP residue in the low pH virus inactivation solution decreased 895 times. After precipitation, the product purity and HCP residual meet the quality criteria of monoclonal antibodies. CA precipitation can reduce the chromatography step in the conventional purification process. In conclusion, CA precipitation in the downstream process can simplify the conventional purification process, fully meet the purification quality criterion of mab-X, and improve production efficiency and reduce production costs. The results of this study may promote the application of CA precipitation in the purification of monoclonal antibodies, and provide a reference for solving the bottleneck of the current purification process.
Cricetinae
;
Animals
;
Antibodies, Monoclonal/metabolism*
;
Caprylates/chemistry*
;
Cell Culture Techniques
;
Chromatography, Affinity
;
CHO Cells
;
Cricetulus
;
Chemical Precipitation
3.Advances in three-dimensional tumor models for colorectal cancer.
Chen Tong WANG ; Jiao Lin ZHOU ; Guo Le LIN ; Sheng Yi YIN ; Lin CONG ; Guan Nan ZHANG ; Yang AN ; Xiao Yuan QIU
Chinese Journal of Oncology 2023;45(6):464-470
Conventional tumor culture models include two-dimensional tumor cell cultures and xenograft models. The former has disadvantages including lack of tumor heterogeneity and poor clinical relevance, while the latter are limited by the slow growth, low engraftment successful rate, and high cost. In recent years, in vitro three-dimensional (3D) tumor models have emerged as the tool to better recapitulate the spatial structure and the in vivo environment of tumors. In addition, they preserve the pathological and genetic features of tumor cells and reflect the complex intracellular and extracellular interactions of tumors, which have become a powerful tool for investigating the tumor mechanism, drug screening, and personalized cancer treatment. 3D tumor model technologies such as spheroids, organoids, and microfluidic devices are maturing. Application of new technologies such as co-culture, 3D bioprinting, and air-liquid interface has further improved the clinical relevance of the models. Some models recapitulate the tumor microenvironment, and some can even reconstitute endogenous immune components and microvasculature. In recent years, some scholars have combined xenograft models with organoid technology to develop matched in vivo/in vitro model biobanks, giving full play to the advantages of the two technologies, and providing an ideal research platform for individualized precision therapy for specific molecular targets in certain subtypes of tumors. So far, the above technologies have been widely applied in the field of colorectal cancer research. Our research team is currently studying upon the application of patient-derived tumor cell-like clusters, a self-assembly 3D tumor model, in guiding the selection of postoperative chemotherapy regimens for colorectal cancer. A high modeling success rate and satisfactory results in the drug screening experiments have been achieved. There is no doubt that with the advancement of related technologies, 3D tumor models will play an increasingly important role in the research and clinical practice of colorectal cancer.
Humans
;
Organoids/pathology*
;
Cell Culture Techniques
;
Colorectal Neoplasms/pathology*
;
Tumor Microenvironment
4.Overview and prospects of an in vitro cell model for studying liver fibrosis.
Chinese Journal of Hepatology 2023;31(6):668-672
Liver fibrosis incidence and adverse outcomes are high; however, there are no known chemical drugs or biological agents that are specific and effective for treatment. The paucity of a robust and realistic in vitro model for liver fibrosis is one of the major causes hindering anti-liver fibrosis drug development. This article summarizes the latest progress in the development of in vitro cell models for liver fibrosis, with a focus based on the analysis of induction and activation of hepatic stellate cells, cell co-culture, and 3D model co-construction, as well as concurrent potential methods based on hepatic sinusoidal endothelial cell establishment.
Humans
;
Liver Cirrhosis/pathology*
;
Hepatic Stellate Cells
;
Cell Culture Techniques
;
Endothelial Cells
5.Progress on three-dimensional cell culture technology and their application.
Xiaoqin LU ; Xiaofeng LIU ; Hao ZHONG ; Wei ZHANG ; Shuzhen YU ; Rongfa GUAN
Journal of Biomedical Engineering 2023;40(3):602-608
Three-dimensional (3D) cell culture model is a system that co-culture carriers with 3D structural materials and different types of cells in vitro to simulate the microenvironment in vivo. This novel cell culture model has been proved to be close to the natural system in vivo. In the process of cell attachment, migration, mitosis and apoptosis, it could produce biological reactions different from that of monolayer cell culture. Therefore, it can be used as an ideal model to evaluate the dynamic pharmacological effects of active substances and the metastasis process of cancer cells. This paper compared and analyzed the different characteristics of cell growth and development under two-dimensional (2D) and 3D model culture and introduced the establishment method of 3D cell model. The application progress of 3D cell culture technology in tumor model and intestinal absorption model was summarized. Finally, the application prospect of 3D cell model in the evaluation and screening of active substance was revealed. This review is expected to provide reference for the development and application of new 3D cell culture models.
Cell Culture Techniques, Three Dimensional
;
Cell Culture Techniques
;
Apoptosis
;
Cell Proliferation
;
Technology
6.Continuous purification and culture of rat type 1 and type 2 alveolar epithelial cells by magnetic cell sorting.
Di LIU ; Jian-Hui SUN ; Hua-Cai ZHANG ; Jian-Xin JIANG ; Ling ZENG
Chinese Journal of Traumatology 2022;25(3):138-144
PURPOSE:
The incidence of acute lung injury (ALI) in severe trauma patients is 48% and the mortality rate following acute respiratory distress syndrome evolved from ALI is up to 68.5%. Alveolar epithelial type 1 cells (AEC1s) and type 2 cells (AEC2s) are the key cells in the repair of injured lungs as well as fetal lung development. Therefore, the purification and culture of AEC1s and AEC2s play an important role in the research of repair and regeneration of lung tissue.
METHODS:
Sprague-Dawley rats (3-4 weeks, 120-150 g) were purchased for experiment. Dispase and DNase I were jointly used to digest lung tissue to obtain a single-cell suspension of whole lung cells, and then magnetic bead cell sorting was performed to isolate T1α positive cells as AEC1s from the single-cell suspension by using polyclonal rabbit anti-T1a (a specific AEC1s membrane protein) antibodies combined with anti-rabbit IgG microbeads. Afterwards, alveolar epithelial cell membrane marker protein EpCAM was designed as a key label to sort AEC2s from the remaining T1α-neg cells by another positive immunomagnetic selection using monoclonal mouse anti-EpCAM antibodies and anti-mouse IgG microbeads. Cell purity was identified by immunofluorescence staining and flow cytometry.
RESULTS:
The purity of AEC1s and AEC2s was 88.3% ± 3.8% and 92.6% ± 2.7%, respectively. The cell growth was observed as follows: AEC1s stretched within the 12-16 h, but the cells proliferated slowly; while AEC2s began to stretch after 24 h and proliferated rapidly from the 2nd day and began to differentiate after 3 days.
CONCLUSION
AEC1s and AEC2s sorted by this method have high purity and good viability. Therefore, our method provides a new approach for the isolation and culture of AEC1s and AEC2s as well as a new strategy for the research of lung repair and regeneration.
Alveolar Epithelial Cells/cytology*
;
Animals
;
Cell Culture Techniques
;
Cell Separation/methods*
;
Immunoglobulin G/metabolism*
;
Lung
;
Magnetic Phenomena
;
Rats
;
Rats, Sprague-Dawley
7.Progress in the application of three-dimensional cell culture model in toxicity tests of xenobiotic.
Zi Wei WANG ; Rui ZHANG ; Wen CHEN
Chinese Journal of Preventive Medicine 2022;56(1):20-24
In the process of xenobiotic toxicity prediction and risk assessment, in vitro cell culture models possess high practical application value. With the rapid development of biological technologies such as three-dimensional (3D) bio-printing, organoid culture and organ-on-a-chip systems, in vitro cell culture models have made great progress. Sharing the similarities in structure, function and the physiological environment with tissues or organs in vivo, hazard identification and dose-response analysis based on 3D cell culture models provide access to more accurate toxicity data as a theoretical basis for risk assessment and risk management of chemicals. This review summarizes the establishment of three typical 3D cell culture models, i.e., human cell line-based co-culture model, 3D-printed scaffold-based cell culture model and organoids, and their application in toxicity tests of xenobiotics.
Cell Culture Techniques
;
Cell Culture Techniques, Three Dimensional
;
Cell Line
;
Humans
;
Toxicity Tests
;
Xenobiotics/toxicity*
8.Optimization of Three-Dimensional Culture Conditions of HepG2 Cells with Response Surface Methodology Based on the VitroGel System.
Jing Bo WANG ; Wen QIN ; Zhuo YANG ; Shi SHEN ; Yan MA ; Li Yuan WANG ; Qin ZHUO ; Zhao Long GONG ; Jun Sheng HUO ; Chen CHEN
Biomedical and Environmental Sciences 2022;35(8):688-698
OBJECTIVE:
This study optimizes three-dimensional (3D) culture conditions of HepG2 using response surface methodology (RSM) based on the VitroGel system to facilitate the cell model in vitro for liver tissues.
METHOD:
HepG2 cell was 3D cultured on the VitroGel system. Cell viability was detected using Cell Counting Kit-8 (CCK-8) assay of HepG2 lived cell numbers. The proliferation of HepG2 cell and clustering performance was measured via fluorescence staining test. Albumin concentration in the culture medium supernatant as an index of HepG2 cell biological function was measured with ELISA kit. Independent factor tests were conducted with three key factors: inoculated cell concentration, cultured time, and dilution degree of the hydrogel. The preliminary results of independent factor tests were used to determine the levels of factors for RSM.
RESULT:
The selected optimal culture conditions are as follows: concentration of inoculated cells was 4.44 × 10 5/mL, culture time was 4.86 days, and hydrogel dilution degree was 1:2.23. The result shows that under optimal conditions, the predicted optical density (OD) value of cell viability was 3.10 and measured 2.978 with a relative error of 3.94%.
CONCLUSION
This study serves as a reference for the 3D HepG2 culture and constructs liver tissues in vitro. Additionally, it provides the foundation for repeated dose high-throughput toxicity studies and other scientific research work.
Albumins
;
Cell Culture Techniques/methods*
;
Hep G2 Cells
;
Humans
;
Hydrogels
9.Development of a culture chamber for mechanical loading of adherent cells with large uniform strain.
Ziqi WANG ; Lilan GAO ; Linwei LYU ; Xin WANG ; Chunqiu ZHANG
Journal of Biomedical Engineering 2022;39(5):997-1004
Based on the current study of the influence of mechanical factors on cell behavior which relies heavily on experiments in vivo, a culture chamber with a large uniform strain area containing a linear motor-powered, up-to-20-Hz cell stretch loading device was developed to exert mechanical effects on cells. In this paper, using the strain uniformity as the target and the substrate thickness as the variable, the substrate bottom of the conventional incubation chamber is optimized by using finite element technique, and finally a new three-dimensional model of the incubation chamber with "M" type structure in the section is constructed, and the distribution of strain and displacement fields are detected by 3D-DIC to verify the numerical simulation results. The experimental results showed that the new cell culture chamber increased the accuracy and homogeneous area of strain loading by 49.13% to 52.45% compared with that before optimization. In addition, the morphological changes of tongue squamous carcinoma cells under the same strain and different loading times were initially studied using this novel culture chamber. In conclusion, the novel cell culture chamber constructed in this paper combines the advantages of previous techniques to deliver uniform and accurate strains for a wide range of cell mechanobiology studies.
Stress, Mechanical
;
Cell Culture Techniques
;
Computer Simulation
;
Finite Element Analysis
10.Development and future promise of salivary gland organoids and salivary gland tumor organoids.
Bo WANG ; Ya Bing MU ; Guang Xiang ZANG
Chinese Journal of Stomatology 2022;57(5):535-539
Salivary glands are important organs in the oral and maxillofacial region. Environment and genetic factors may cause salivary gland tumors or non-neoplastic diseases, but the mechanisms of those diseases are still unclear. One of the important reasons is the short of researching media and model. As a new technique and research model, organoids have been widely used in the research of various diseases. Organoid culture plays a bridging role between two-dimensional cell culture and living animal models, and it is also the most promising translational research model that could connect the clinical research to basic research. This review will discuss the recent development of organoid techniques in the culture of normal salivary glands and salivary gland tumors, also their applications and challenges in tissue engineering, etiological research, and tumor therapy.
Animals
;
Cell Culture Techniques
;
Organoids
;
Salivary Gland Neoplasms
;
Salivary Glands
;
Tissue Engineering

Result Analysis
Print
Save
E-mail