1.Effects of VX765 on osteoarthritis and chondrocyte inflammation in rats.
Wanran HUANG ; Junxue TU ; Aiqing QIAO ; Chujun HE
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):74-81
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects and underlying mechanisms of VX765 on osteoarthritis (OA) and chondrocytes inflammation in rats.
		                        		
		                        			METHODS:
		                        			Chondrocytes were isolated from the knee joints of 4-week-old Sprague Dawley (SD) rats. The third-generation cells were subjected to cell counting kit 8 (CCK-8) analysis to assess the impact of various concentrations (0, 1, 5, 10, 20, 50, 100 μmol/L) of VX765 on rat chondrocyte activity. An in vitro lipopolysaccharide (LPS) induced cell inflammation model was employed, dividing cells into control group, LPS group, VX765 concentration 1 group and VX765 concentration 2 group without obvious cytotoxicity. Western blot, real-time fluorescence quantitative PCR, and ELISA were conducted to measure the expression levels of inflammatory factors-transforming growth factor β 1 (TGF-β 1), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α). Additionally, Western blot and immunofluorescence staining were employed to assess the expressions of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1). Thirty-two SD rats were randomly assigned to sham surgery group (group A), OA group (group B), OA+VX765 (50 mg/kg) group (group C), and OA+VX765 (100 mg/kg) group (group D), with 8 rats in each group. Group A underwent a sham operation with a medial incision, while groups B to D underwent additional transverse incisions to the medial collateral ligament and anterior cruciate ligament, with removal of the medial meniscus. One week post-surgery, groups C and D were orally administered 50 mg/kg and 100 mg/kg VX765, respectively, while groups A and B received an equivalent volume of saline. Histopathological examination using HE and safranin-fast green staining was performed, and Mankin scoring was utilized for evaluation. Immunohistochemical staining technique was employed to analyze the expressions of matrix metalloproteinase 13 (MMP-13) and collagen type Ⅱ.
		                        		
		                        			RESULTS:
		                        			The CCK-8 assay indicated a significant decrease in cell viability at VX765 concentrations exceeding 10 μmol/L ( P<0.05), so 4 μmol/L and 8 μmol/L VX765 without obvious cytotoxicity were selected for subsequent experiments. Following LPS induction, the expressions of TGF-β 1, IL-6, and TNF-α in cells significantly increased when compared with the control group ( P<0.05). However, intervention with 4 μmol/L and 8 μmol/L VX765 led to a significant decrease in expression compared to the LPS group ( P<0.05). Western blot and immunofluorescence staining demonstrated a significant upregulation of Nrf2 pathway-related molecules Nrf2 and HO-1 protein expressions by VX765 ( P<0.05), indicating Nrf2 pathway activation. Histopathological examination of rat knee joint tissues and immunohistochemical staining revealed that, compared to group B, treatment with VX765 in groups C and D improved joint structural damage in rat OA, alleviated inflammatory reactions, downregulated MMP-13 expression, and increased collagen type Ⅱ expression.
		                        		
		                        			CONCLUSION
		                        			VX765 can improve rat OA and reduce chondrocyte inflammation, possibly through the activation of the Nrf2 pathway.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Chondrocytes/metabolism*
		                        			;
		                        		
		                        			Matrix Metalloproteinase 13/metabolism*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Collagen Type II/metabolism*
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Lipopolysaccharides/pharmacology*
		                        			;
		                        		
		                        			NF-E2-Related Factor 2/pharmacology*
		                        			;
		                        		
		                        			Inflammation/drug therapy*
		                        			;
		                        		
		                        			Osteoarthritis/metabolism*
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Dipeptides
		                        			;
		                        		
		                        			para-Aminobenzoates
		                        			
		                        		
		                        	
2.Study on injectable chitosan hydrogel with tendon-derived stem cells for enhancing rotator cuff tendon-to-bone healing.
Huawei WEN ; Qingsong ZHANG ; Ming TANG ; Ya'nan LI ; Hongfei TAN ; Yushun FANG
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):91-98
		                        		
		                        			OBJECTIVE:
		                        			To explore the effect of chitosan (CS) hydrogel loaded with tendon-derived stem cells (TDSCs; hereinafter referred to as TDSCs/CS hydrogel) on tendon-to-bone healing after rotator cuff repair in rabbits.
		                        		
		                        			METHODS:
		                        			TDSCs were isolated from the rotator cuff tissue of 3 adult New Zealand white rabbits by Henderson step-by-step enzymatic digestion method and identified by multidirectional differentiation and flow cytometry. The 3rd generation TDSCs were encapsulated in CS to construct TDSCs/CS hydrogel. The cell counting kit 8 (CCK-8) assay was used to detect the proliferation of TDSCs in the hydrogel after 1-5 days of culture in vitro, and cell compatibility of TDSCs/CS hydrogel was evaluated by using TDSCs alone as control. Another 36 adult New Zealand white rabbits were randomly divided into 3 groups ( n=12): rotator cuff repair group (control group), rotator cuff repair+CS hydrogel injection group (CS group), and rotator cuff repair+TDSCs/CS hydrogel injection group (TDSCs/CS group). After establishing the rotator cuff repair models, the corresponding hydrogel was injected into the tendon-to-bone interface in the CS group and TDSCs/CS group, and no other treatment was performed in the control group. The general condition of the animals was observed after operation. At 4 and 8 weeks, real-time quantitative PCR (qPCR) was used to detect the relative expressions of tendon forming related genes (tenomodulin, scleraxis), chondrogenesis related genes (aggrecan, sex determining region Y-related high mobility group-box gene 9), and osteogenesis related genes (alkaline phosphatase, Runt-related transcription factor 2) at the tendon-to-bone interface. At 8 weeks, HE and Masson staining were used to observe the histological changes, and the biomechanical test was used to evaluate the ultimate load and the failure site of the repaired rotator cuff to evaluate the tendon-to-bone healing and biomechanical properties.
		                        		
		                        			RESULTS:
		                        			CCK-8 assay showed that the CS hydrogel could promote the proliferation of TDSCs ( P<0.05). qPCR results showed that the expressions of tendon-to-bone interface related genes were significantly higher in the TDSCs/CS group than in the CS group and control group at 4 and 8 weeks after operation ( P<0.05). Moreover, the expressions of tendon-to-bone interface related genes at 8 weeks after operation were significantly higher than those at 4 weeks after operation in the TDSCs/CS group ( P<0.05). Histological staining showed the clear cartilage tissue and dense and orderly collagen formation at the tendon-to-bone interface in the TDSCs/CS group. The results of semi-quantitative analysis showed that compared with the control group, the number of cells, the proportion of collagen fiber orientation, and the histological score in the TDSCs/CS group increased, the vascularity decreased, showing significant differences ( P<0.05); compared with the CS group, the proportion of collagen fiber orientation and the histological score in the TDSCs/CS group significantly increased ( P<0.05), while there was no significant difference in the number of cells and vascularity ( P>0.05). All samples in biomechanical testing failed at the repair site during the testing process. The ultimate load of the TDSCs/CS group was significantly higher than that of the control group ( P<0.05), but there was no significant difference compared to the CS group ( P>0.05).
		                        		
		                        			CONCLUSION
		                        			TDSCs/CS hydrogel can induce cartilage regeneration to promote rotator cuff tendon-to-bone healing.
		                        		
		                        		
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rotator Cuff/surgery*
		                        			;
		                        		
		                        			Chitosan
		                        			;
		                        		
		                        			Hydrogels
		                        			;
		                        		
		                        			Rotator Cuff Injuries/surgery*
		                        			;
		                        		
		                        			Wound Healing
		                        			;
		                        		
		                        			Tendons/surgery*
		                        			;
		                        		
		                        			Collagen
		                        			;
		                        		
		                        			Stem Cells
		                        			;
		                        		
		                        			Biomechanical Phenomena
		                        			
		                        		
		                        	
3.Case report: Spontaneous resolution of acquired perforating collagenosis following insect bite
Natasha G. Manzo ; Maria Patricia A. Chavez
Journal of the Philippine Dermatological Society 2024;33(Suppl 1):1-2
Acquired perforating collagenosis (APC) is a rare dermatological condition characterized by the spontaneous eruption of skin-colored or erythematous papules or nodules that eventually ulcerate and exude collagenous material. The exact etiology of APC remains unclear, although various triggers, including infections, medications, autoimmune diseases, and trauma, have been implicated.
This case report presents a 63-year-old female with a history of diabetes who developed erythematous papules and plaques topped with thick, yellowish, hyperkeratotic, adherent crusts on the upper back following an insect bite. Histopathological examination confirmed the diagnosis of APC, characterized by a cup-shaped invagination in the epidermis containing degenerated collagen bundles and basophilic material. Masson-trichrome staining showed transepidermal elimination of the collagen fibers. Patient was initially prescribed tretinoin 0.1% cream to be applied 2x a day. However, patient was not able to apply prescribed medications. Interestingly, without any specific treatment, the patient’s symptoms gradually improved over 3 months and eventually resolved completely.
This case report highlights the spontaneous resolution of APC in a patient following an insect bite. While most cases of APC require medical intervention, this case demonstrates the potential for spontaneous healing in certain individuals. Further research is needed to understand the factors that influence the course of APC and to identify potential predictors of spontaneous resolution.
Human ; Female ; Middle Aged: 45-64 Yrs Old ; Collagen ; Insect Bites ; Insect Bites And Stings
4.Human hair follicle-derived mesenchymal stem cells promote tendon repair in a rabbit Achilles tendinopathy model.
Yingyu MA ; Zhiwei LIN ; Xiaoyi CHEN ; Xin ZHAO ; Yi SUN ; Ji WANG ; Xiaozhou MOU ; Hai ZOU ; Jinyang CHEN
Chinese Medical Journal 2023;136(9):1089-1097
		                        		
		                        			BACKGROUND:
		                        			Hair follicles are easily accessible and contain stem cells with different developmental origins, including mesenchymal stem cells (MSCs), that consequently reveal the potential of human hair follicle (hHF)-derived MSCs in repair and regeneration. However, the role of hHF-MSCs in Achilles tendinopathy (AT) remains unclear. The present study investigated the effects of hHF-MSCs on Achilles tendon repair in rabbits.
		                        		
		                        			METHODS:
		                        			First, we extracted and characterized hHF-MSCs. Then, a rabbit tendinopathy model was constructed to analyze the ability of hHF-MSCs to promote repair in vivo . Anatomical observation and pathological and biomechanical analyses were performed to determine the effect of hHF-MSCs on AT, and quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical staining were performed to explore the molecular mechanisms through which hHF-MSCs affects AT. Furthermore, statistical analyses were performed using independent sample t test, one-way analysis of variance (ANOVA), and one-way repeated measures multivariate ANOVA as appropriate.
		                        		
		                        			RESULTS:
		                        			Flow cytometry, a trilineage-induced differentiation test, confirmed that hHF-derived stem cells were derived from MSCs. The effect of hHF-MSCs on AT revealed that the Achilles tendon was anatomically healthy, as well as the maximum load carried by the Achilles tendon and hydroxyproline proteomic levels were increased. Moreover, collagen I and III were upregulated in rabbit AT treated with hHF-MSCs (compared with AT group; P  < 0.05). Analysis of the molecular mechanisms revealed that hHF-MSCs promoted collagen fiber regeneration, possibly through Tenascin-C (TNC) upregulation and matrix metalloproteinase (MMP)-9 downregulation.
		                        		
		                        			CONCLUSIONS
		                        			hHF-MSCs can be a treatment modality to promote AT repair in rabbits by upregulating collagen I and III. Further analysis revealed that treatment of AT using hHF-MSCs promoted the regeneration of collagen fiber, possibly because of upregulation of TNC and downregulation of MMP-9, thus suggesting that hHF-MSCs are more promising for AT.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Rabbits
		                        			;
		                        		
		                        			Hair Follicle
		                        			;
		                        		
		                        			Achilles Tendon/pathology*
		                        			;
		                        		
		                        			Tendinopathy/pathology*
		                        			;
		                        		
		                        			Proteomics
		                        			;
		                        		
		                        			Collagen Type I
		                        			;
		                        		
		                        			Mesenchymal Stem Cells
		                        			
		                        		
		                        	
5.Inhibition of glutaminolysis alleviates myocardial fibrosis induced by angiotensin II.
Pan-Pan WANG ; Hao-Miao BAI ; Si-Yu HE ; Zi-Qi XIA ; Mei-Jie LIU ; Jiong AN ; Jia-Heng ZHOU ; Chen-Han LI ; Wei ZHANG ; Xing ZHANG ; Xin-Pei WANG ; Jia LI
Acta Physiologica Sinica 2023;75(2):179-187
		                        		
		                        			
		                        			The present study was aimed to investigate the role and mechanism of glutaminolysis of cardiac fibroblasts (CFs) in hypertension-induced myocardial fibrosis. C57BL/6J mice were administered with a chronic infusion of angiotensin II (Ang II, 1.6 mg/kg per d) with a micro-osmotic pump to induce myocardial fibrosis. Masson staining was used to evaluate myocardial fibrosis. The mice were intraperitoneally injected with BPTES (12.5 mg/kg), a glutaminase 1 (GLS1)-specific inhibitor, to inhibit glutaminolysis simultaneously. Immunohistochemistry and Western blot were used to detect protein expression levels of GLS1, Collagen I and Collagen III in cardiac tissue. Neonatal Sprague-Dawley (SD) rat CFs were treated with 4 mmol/L glutamine (Gln) or BPTES (5 μmol/L) with or without Ang II (0.4 μmol/L) stimulation. The CFs were also treated with 2 mmol/L α-ketoglutarate (α-KG) under the stimulation of Ang II and BPTES. Wound healing test and CCK-8 were used to detect CFs migration and proliferation respectively. RT-qPCR and Western blot were used to detect mRNA and protein expression levels of GLS1, Collagen I and Collagen III. The results showed that blood pressure, heart weight and myocardial fibrosis were increased in Ang II-treated mice, and GLS1 expression in cardiac tissue was also significantly up-regulated. Gln significantly promoted the proliferation, migration, mRNA and protein expression of GLS1, Collagen I and Collagen III in the CFs with or without Ang II stimulation, whereas BPTES significantly decreased the above indices in the CFs. α-KG supplementation reversed the inhibitory effect of BPTES on the CFs under Ang II stimulation. Furthermore, in vivo intraperitoneal injection of BPTES alleviated cardiac fibrosis of Ang II-treated mice. In conclusion, glutaminolysis plays an important role in the process of cardiac fibrosis induced by Ang II. Targeted inhibition of glutaminolysis may be a new strategy for the treatment of myocardial fibrosis.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Angiotensin II/pharmacology*
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Fibrosis
		                        			;
		                        		
		                        			Collagen/pharmacology*
		                        			;
		                        		
		                        			Collagen Type I/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Myocardium/pathology*
		                        			
		                        		
		                        	
6.Genetic analysis of a child patient with rare fibrochondrogenesis due to COL11A1 gene variant.
Danyang LI ; Chuan ZHANG ; Bingbo ZHOU ; Xue CHEN ; Yupei WANG ; Ling HUI
Chinese Journal of Medical Genetics 2023;40(4):468-472
		                        		
		                        			OBJECTIVE:
		                        			To analyze the clinical data and genetic characteristics of a child with fibrocartilage hyperplasia type 1 (FBCG1).
		                        		
		                        			METHODS:
		                        			A child who was admitted to Gansu Provincial Maternity and Child Health Care Hospital on January 21, 2021 due to severe pneumonia and suspected congenital genetic metabolic disorder was selected as the study subject. Clinical data of the child was collected, and genomic DNA was extracted from peripheral blood samples from the child and her parents. Whole exome sequencing (WES) was carried out, and candidate variants were verified by Sanger sequencing.
		                        		
		                        			RESULTS:
		                        			The patient, a 1-month-old girl, had presented with facial dysmorphism, abnormal skeletal development, and clubbing of upper and lower limbs. WES revealed that she has harbored compound heterozygous variants c.3358G>A/c.2295+1G>A of the COL11A1 gene, which has been associated with fibrochondrogenesis. Sanger sequencing has verified that the variants have been respectively inherited from her father and mother, both of whom were phenotypically normal. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.3358G>A variant was graded as likely pathogenic (PM1+PM2_Supporting+PM3+PP3), and so was the c.2295+1G>A variant (PVS1+PM2_Supporting).
		                        		
		                        			CONCLUSION
		                        			The compound heterozygous variants c.3358G>A/c.2295+1G>A probably underlay the disease in this child. Above finding has facilitated definite diagnosis, genetic counseling for her family.
		                        		
		                        		
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Abnormalities, Multiple
		                        			;
		                        		
		                        			Collagen Type XI/genetics*
		                        			;
		                        		
		                        			Genetic Counseling
		                        			;
		                        		
		                        			Genomics
		                        			;
		                        		
		                        			Mutation
		                        			
		                        		
		                        	
7.Analysis of COL1A1 and COL1A2 gene variants in two fetuses with osteogenesis imperfecta.
Yaning ZHANG ; Xinyue WU ; Qiaoyun LIU ; Xiaona YAN ; Huize LIU ; Dairong FENG
Chinese Journal of Medical Genetics 2023;40(7):821-827
		                        		
		                        			OBJECTIVE:
		                        			To explore the genetic basis of two fetuses with an osteogenesis imperfecta (OI) phenotype.
		                        		
		                        			METHODS:
		                        			Two fetuses diagnosed at the Affiliated Hospital of Weifang Medical College respectively on June 11, 2021 and October 16, 2021 were selected as the study subjects. Clinical data of the fetuses were collected. Amniotic fluid samples of the fetuses and peripheral blood samples of their pedigree members were collected for the extraction of genomic DNA. Whole exome sequencing (WES) and Sanger sequencing were carried out to identify the candidate variants. Minigene splicing reporter analysis was used to validate the variant which may affect the pre-mRNA splicing.
		                        		
		                        			RESULTS:
		                        			For fetus 1, ultrasonography at 17+6 weeks of gestation had revealed shortening of bilateral humerus and femurs by more than two weeks, in addition with multiple fractures and angular deformities of long bones. WES revealed that fetus 1 had harbored a heterozygous c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in exon 49 of the COL1A1 gene (NM_000088.4). Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), it was classified as a pathogenic variant (PVS1+PS2+PM2_Supporting) for disrupting the downstream open reading frame resulting in premature translational termination, being de novo in origin, and lacking records in the population and disease databases.For fetus 2, ultrasonography at 23 weeks of gestation also revealed shortening of bilateral humerus and femurs by one and four weeks, respectively, in addition with bending of bilateral femurs, tibias and fibulas. Fetus 2 had harbored a heterozygous c.1557+3A>G variant in intron 26 of the COL1A2 gene (NM_000089.4). Minigene experiment showed that it has induced skipping of exon 26 from the COL1A2 mRNA transcript, resulting in an in-frame deletion (c.1504_1557del) of the COL1A2 mRNA transcript. The variant was inherited from its father and had been previously reported in a family with OI type 4. It was therefore classified as a pathogenic variant (PS3+PM1+PM2_Supporting+PP3+PP5).
		                        		
		                        			CONCLUSION
		                        			The c.3949_3950insGGCATGT (p.N1317Rfs*114) variant in the COL1A1 gene and c.1557+3A>G variant in the COL1A2 gene probably underlay the disease in the two fetuses. Above findings not only have enriched the mutational spectrum of OI, but also shed light on the correlation between its genotype and phenotype and provided a basis for genetic counseling and prenatal diagnosis for the affected pedigrees.
		                        		
		                        		
		                        		
		                        			Pregnancy
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Osteogenesis Imperfecta/genetics*
		                        			;
		                        		
		                        			Collagen Type I, alpha 1 Chain
		                        			;
		                        		
		                        			Collagen Type I/genetics*
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Fetus
		                        			
		                        		
		                        	
8.COL4A5 genotypes and clinical characteristics of children with Alport syndrome.
Wei HUANG ; Cui-Hua LIU ; Ji-Tong LI ; Yu-Jie LIU ; Yu-Liu LI ; Ming TIAN ; Guang-Hai CAO ; Shu-Feng ZHANG
Chinese Journal of Contemporary Pediatrics 2023;25(7):732-738
		                        		
		                        			OBJECTIVES:
		                        			To investigate the genotypes of the pathogenic gene COL4A5 and the characteristics of clinical phenotypes in children with Alport syndrome (AS).
		                        		
		                        			METHODS:
		                        			A retrospective analysis was performed for the genetic testing results and clinical data of 19 AS children with COL4A5 gene mutations.
		                        		
		                        			RESULTS:
		                        			Among the 19 children with AS caused by COL4A5 gene mutations, 1 (5%) carried a new mutation of the COL4A5 gene, i.e., c.3372A>G(p.P1124=) and presented with AS coexisting with IgA vasculitis nephritis; 3 children (16%) had large fragment deletion of the COL4A5 gene, among whom 2 children (case 7 had a new mutation site of loss51-53) had gross hematuria and albuminuria at the onset, and 1 child (case 13 had a new mutation site of loss3-53) only had microscopic hematuria, while the other 15 children (79%) had common clinical phenotypes of AS, among whom 7 carried new mutations of the COL4A5 gene. Among all 19 children, 3 children (16%) who carried COL4A5 gene mutations also had COL4A4 gene mutations, and 1 child (5%) had COL4A3 gene mutations. Among these children with double gene mutations, 2 had gross hematuria and proteinuria at the onset.
		                        		
		                        			CONCLUSIONS
		                        			This study expands the genotype and phenotype spectrums of the pathogenic gene COL4A5 for AS. Children with large fragment deletion of the COL4A5 gene or double gene mutations of COL4A5 with COL4A3 or COL4A4 tend to have more serious clinical manifestations.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Nephritis, Hereditary/pathology*
		                        			;
		                        		
		                        			Hematuria/complications*
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Collagen Type IV/genetics*
		                        			;
		                        		
		                        			Genotype
		                        			;
		                        		
		                        			Mutation
		                        			
		                        		
		                        	
9.Research Advances in Medical Materials and Products for Soft Tissue Repairs.
Jiaqi LI ; Rui WANG ; Qianqian HAN ; Xue SUN
Chinese Journal of Medical Instrumentation 2023;47(4):415-423
		                        		
		                        			
		                        			Soft tissue is an indispensable tissue in human body. It plays an important role in protecting the body from external physical, chemical or biological factors. Mild soft tissue injuries can self-heal, while severe soft tissue injuries may require related treatment. Natural polymers (such as chitosan, hyaluronic acid, and collagen) and synthetic polymers (such as polyethylene glycol and polylactic acid) exhibit good biocompatibility, biodegradability and low toxicity. It can be used for soft tissue repairs for antibacterial, hemostatic and wound healing purposes. Their related properties can be enhanced through modification or preparation of composite materials. Commonly used soft tissue repairs include wound dressings, biological patches, medical tissue adhesives, and tissue engineering scaffolds. This study introduces the properties, mechanisms of action and applications of various soft tissue repair medical materials, including chitosan, hyaluronic acid, collagen, polyethylene glycol and polylactic acid, and provides an outlook on the application prospects of soft tissue repair medical materials and products.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Biocompatible Materials/chemistry*
		                        			;
		                        		
		                        			Chitosan/chemistry*
		                        			;
		                        		
		                        			Hyaluronic Acid
		                        			;
		                        		
		                        			Tissue Scaffolds/chemistry*
		                        			;
		                        		
		                        			Collagen/chemistry*
		                        			;
		                        		
		                        			Polymers/chemistry*
		                        			;
		                        		
		                        			Polyethylene Glycols
		                        			;
		                        		
		                        			Soft Tissue Injuries
		                        			
		                        		
		                        	
10.Amygdalin Ameliorates Liver Fibrosis through Inhibiting Activation of TGF-β/Smad Signaling.
Zhun XIAO ; Qiang JI ; Ya-Dong FU ; Si-Qi GAO ; Yong-Hong HU ; Wei LIU ; Gao-Feng CHEN ; Yong-Ping MU ; Jia-Mei CHEN ; Ping LIU
Chinese journal of integrative medicine 2023;29(4):316-324
		                        		
		                        			OBJECTIVE:
		                        			To observe the effect of amygdalin on liver fibrosis in a liver fibrosis mouse model, and the underlying mechanisms were partly dissected in vivo and in vitro.
		                        		
		                        			METHODS:
		                        			Thirty-two male mice were randomly divided into 4 groups, including control, model, low- and high-dose amygdalin-treated groups, 8 mice in each group. Except the control group, mice in the other groups were injected intraperitoneally with 10% carbon tetrachloride (CCl4)-olive oil solution 3 times a week for 6 weeks to induce liver fibrosis. At the first 3 weeks, amygdalin (1.35 and 2.7 mg/kg body weight) were administered by gavage once a day. Mice in the control group received equal quantities of subcutaneous olive oil and intragastric water from the fourth week. At the end of 6 weeks, liver tissue samples were harvested to detect the content of hydroxyproline (Hyp). Hematoxylin and eosin and Sirius red staining were used to observe the inflammation and fibrosis of liver tissue. The expressions of collagen I (Col-I), alpha-smooth muscle actin (α-SMA), CD31 and transforming growth factor β (TGF-β)/Smad signaling pathway were observed by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot, respectively. The activation models of hepatic stellate cells, JS-1 and LX-2 cells induced by TGF-β1 were used in vitro with or without different concentrations of amygdalin (0.1, 1, 10 µmol/L). LSECs. The effect of different concentrations of amygdalin on the expressions of liver sinusoidal endothelial cells (LSECs) dedifferentiation markers CD31 and CD44 were observed.
		                        		
		                        			RESULTS:
		                        			High-dose of amygdalin significantly reduced the Hyp content and percentage of collagen positive area, and decreased the mRNA and protein expressions of Col-I, α-SMA, CD31 and p-Smad2/3 in liver tissues of mice compared to the model group (P<0.01). Amygdalin down-regulated the expressions of Col-I and α-SMA in JS-1 and LX-2 cells, and TGFβ R1, TGFβ R2 and p-Smad2/3 in LX-2 cells compared to the model group (P<0.05 or P<0.01). Moreover, 1 and 10 µmol/L amygdalin inhibited the mRNA and protein expressions of CD31 in LSECs and increased CD44 expression compared to the model group (P<0.05 or P<0.01).
		                        		
		                        			CONCLUSIONS
		                        			Amygdalin can dramatically alleviate liver fibrosis induced by CCl4 in mice and inhibit TGF-β/Smad signaling pathway, consequently suppressing HSCs activation and LSECs dedifferentiation to improve angiogenesis.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Transforming Growth Factor beta/metabolism*
		                        			;
		                        		
		                        			Amygdalin/therapeutic use*
		                        			;
		                        		
		                        			Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			Olive Oil/therapeutic use*
		                        			;
		                        		
		                        			Rats, Wistar
		                        			;
		                        		
		                        			Smad Proteins/metabolism*
		                        			;
		                        		
		                        			Liver Cirrhosis/metabolism*
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Transforming Growth Factor beta1/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Collagen Type I/metabolism*
		                        			;
		                        		
		                        			Carbon Tetrachloride
		                        			;
		                        		
		                        			Hepatic Stellate Cells
		                        			
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail