1.Epidemiological characteristics of sexually transmitted diseases in Yangzhou City from 2019 to 2023
XU Chun ; LI Jincheng ; YANG Wenbin ; JIANG Yan ; YANG Kejiao ; BU Chunhong
Journal of Preventive Medicine 2025;37(2):158-162
Objective:
o analyze the epidemic characteristics of five sexually transmitted diseases (STDs), including syphilis, gonorrhea, condyloma acuminatum, genital herpes and genital Chlamydia trachomatis infection in Yangzhou City, Jiangsu Province from 2019 to 2023, so as to provide the reference for the prevention and control strategies of STDs.
Methods:
Data of the onset time and diagnostic types of STDs cases in Yangzhou City from 2019 to 2023 were collected from the Infectious Disease Surveillance System of Chinese Disease Prevention and Control Information System. The temporal, regional and population characteristics of five types of STDs was analyzed using the descriptive epidemiological method.
Results:
A total of 10 895 cases of STDs were reported in Yangzhou City from 2019 to 2023, with an average annual reported incidence rate of 47.83/105. The average annual reported incidence rates of syphilis, gonorrhea, condyloma acuminatum, genital herpes and genital Chlamydia trachomatis infections were 41.11/105, 2.83/105, 2.59/105, 0.43/105 and 0.85/105, respectively. The reported incidence rate of STDs showed a decreasing trend from 2019 to 2023 (P<0.05), with an average annual growth rate of -3.44%. The reported incidence rates of syphilis and gonorrhea showed a decreasing trend (both P<0.05), with average annual growth rates of -4.26% and -6.47%, respectively. The reported incidence rate of genital Chlamydia trachomatis infection showed an increasing trend (P<0.05), with an average annual growth rate of 22.32%. Baoying County, Guangling District and Hanjiang District had the top three reported incidence rates of STDs, at 56.61/105, 55.61/105 and 46.50/105, respectively. The average annual reported incidence rate of STDs among males was higher than that among females (53.19/105 vs. 42.54/105, P<0.05). The STD cases were primarily people aged 50 years and above, with 6 641 cases accounting for 60.95%. The occupations of STD cases were mainly farmers, housekeepers and unemployed, with 4 670 and 3 273 cases accounting for 42.86% and 30.04%, respectively.
Conclusions
The overall reported incidence of STDs in Yangzhou City from 2019 to 2023 showed a downward trend, while the reported incidence of genital Chlamydia trachomatis infection showed an upward trend. The individuals aged 50 years and above, farmers, housekeepers and the unemployed were identified as high-risk groups for STDs.
2.“Textbook Outcome” and Influencing Factors in Patients with Pancreatic Ductal Adenocarcinoma Following Laparoscopic Pancreaticoduodenectomy: A Retrospective Cohort Study
Yakai YANG ; Shuai XU ; Chunhong ZHAO ; Yukun CAO ; Guangsheng YU ; Jun LIU
Cancer Research on Prevention and Treatment 2025;52(10):827-833
Objective To investigate the short- and long-term prognoses and the risk factors affecting “textbook outcome” (TO) after laparoscopic pancreaticoduodenectomy (LPD) for pancreatic ductal adenocarcinoma (PDAC). Methods The clinical and follow-up data of patients diagnosed with PDAC and treated with LPD from January 2019 to December 2022 were retrospectively analyzed. The prognosis was compared between TO and non-TO groups, and univariate and multivariate logistic regression analyses were used to identify independent prognostic factors for TO. Results A total of 284 patients were enrolled in this study, including 185 cases in the TO group and 99 cases in the non-TO group. The 1-, 3- and 5-year overall survival (OS) rates of the TO and non-TO groups with PDAC were 87.3% vs. 85.9%, 52.5% vs. 38.4%, and 18.0% vs. 4.5%, respectively (P=0.020); the recurrence-free survival (RFS) rates were 74.1% vs. 65.7%, 27.1% vs. 21.0%, and 10.0% vs. 0%, respectively (P=0.042). Multivariate logistic regression analysis showed that operation time >360 min (OR=0.561, 95%CI: 0.321-0.979, P=0.042), intraoperative blood loss >400 ml (OR=0.392, 95%CI: 0.175-0.879, P=0.023), hard or tough texture of pancreas (OR=2.240, 95%CI: 1.247-4.022, P=0.007), and main pancreatic duct diameter >3 mm (OR=1.931, 95%CI: 1.126-3.312, P=0.017) were independent prognostic factors for TO. Conclusion After the learning curve, more than 60% of patients with PDAC can achieve TO after LPD. The chances of achieving TO are significantly reduced when the operation time >360 min, the intraoperative blood loss >400 ml, the texture of pancreas was soft, and the diameter of the main pancreatic duct >3 mm.
3.Effects of chronic intermittent hypobaric hypoxia on expression and promoter region methylation of key enzyme genes related to glucose metabolism in diabetic mice
Chunhong SUI ; Yantao HE ; Yawei XU ; Pengyan JI ; Ying CHANG ; Dongfang ZHANG ; Donghai ZHAO ; Lianhai JIN ; Cheng WANG
Journal of Environmental and Occupational Medicine 2024;41(8):911-918
Background Chronic intermittent hypobaric hypoxia (CIHH) can effectively alleviate type 2 diabetes mellitus (T2DM). In this process, the underlying mechanism in its association with the epigenetic regulation of DNA methylation in the promoter regions of glucose metabolism key enzyme genes remains unclear yet. Objective To investigate the effects of CIHH on expression and promoter region methylation of key enzyme genes related to glucose metabolism in diabetes mice, and to explore the underlying mechanism by which CIHH regulates glucose metabolism. Methods Forty C57BL/6J male mice were divided randomly into a normobaric normoxic control (NN/CON) group, a chronic intermittent hypobaric hypoxia intervention control (CIHH/CON) group, a normobaric normoxic diabetic model (NN/DM) group, and a chronic intermittent hypobaric hypoxia intervention diabetic model (CIHH/DM) group. The mice in the NN/DM and the CIHH/DM groups were fed for 7 weeks with high-fat and high-sugar diet. Subsequently, these mice were intraperitoneally injected consecutively with 50 mmol·L−1 streptozotocin (STZ) for 5 d at a dose of 40 mg·kg−1 (body weight) per day to create T2DM model mice. The mice in the CIHH/DM and the CIHH/CON groups were intervened by simulating hypobaric hypoxia at
4.Research progress on active mechanism and structure feature of polysaccharides from Zizyphus jujube in Rhamnaceae plants
Xiaoqiang DONG ; Chang WEN ; Jindan XU ; Lexue SHI ; Yulong HU ; Jieming LI ; Chunhong DONG ; Kan DING
Journal of China Pharmaceutical University 2024;55(4):443-453
The genus jujube(Ziziphus jujuba Mill.)within the Rhamnaceae family encompasses numerous varieties,such as Ziziphus jujuba Mill.var.jujuba,Ziziphus jujuba var.inermis,and var.spinosa,etc.Among these,the jujube fructus has the most abundant cultivated variants across the country,including Ziziphus jujuba cv.Hamidazao and Ziziphus jujuba cv.Huanghetanzao.Jujube plants are rich in variety and are used for both medicinal and food purposes.Polysaccharides,one of the main active ingredients of jujube,are important medicinal components that contribute to its efficacy.Jujube polysaccharides have been found to promote hematopoiesis,exhibit antioxidant and anti-tumor activities,repair liver damage,regulate the immune system,and provide anti-inflammatory effects.By comprehensively summarizing and analyzing the literature on jujube polysaccharides from different varieties and origins,this paper reviews the potential mechanisms of action of jujube polysaccharides in exerting biological activities.It also summarizes the primary structural features,such as relative molecular mass,monosaccharide composition,glycosidic linkage,and the substituent modifications of jujube polysaccharides by sulfation,phosphorylation,carboxymethylation,selenization,and acetylation.This review aims to provide a reference for the research and development of jujube in the fields of innovative polysaccharide drugs and functional foods.
5.Identification of key ferroptosis genes in paraspinal muscle degeneration based on RNA sequencing and bioinformatics analysis
Chunhong ZHANG ; Hongchao HUANG ; Yue LIU ; Lilong DU ; Haiwei XU ; Ning LI ; Yongjin LI
Tianjin Medical Journal 2024;52(9):991-995
Objective To explore the gene expression profile in paraspinal muscle degeneration(PMD)and identify key ferroptosis genes.Methods RNA sequencing was performed on paraspinal muscle tissue of 3 normal and 3 PMD patients respectively to obtain differentially expressed genes.Through protein-protein interaction(PPI)and gene functional enrichment analysis,the intersection of ferroptosis genes was identified to identify key hub genes associated with ferroptosis.The diagnostic value for PMD disease was analyzed by receiver operating characteristic(ROC)curves.Results A total of 292 differentially expressed genes were identified in PMD.Among them,125 genes were significantly downregulated and 167 genes were significantly upregulated.Bioinformatics analysis revealed that 14 differentially expressed genes were associated with ferroptosis.Among them,ferroptosis genes MUC1,ATF3 and CDKN1A were key hub genes with good specificity and sensitivity for diagnosing PMD.Functional enrichment analysis revealed that they may mediate the occurrence and progression of PMD by regulating cell apoptosis,ferroptosis and skeletal muscle tissue development and differentiation.Conclusion Ferroptosis genes MUC1,ATF3 and CDKN1A can serve as biomarkers for diagnosing PMD,providing theoretical basis for decoding the pathological mechanism of PMD and developing new drugs.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing resistance profiles of Proteus,Morganella and Providencia in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yunmin XU ; Xiaoxue DONG ; Bin SHAN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Ping JI ; Fengbo ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Hongyan ZHENG ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):410-417
Objective To understand the changing distribution and antimicrobial resistance profiles of Proteus,Morganella and Providencia in hospitals across China from January 1,2015 to December 31,2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods Antimicrobial susceptibility testing was carried out following the unified CHINET protocol.The results were interpreted in accordance with the breakpoints in the 2021 Clinical & Laboratory Standards Institute(CLSI)M100(31 st Edition).Results A total of 32 433 Enterobacterales strains were isolated during the 7-year period,including 24 160 strains of Proteus,6 704 strains of Morganella,and 1 569 strains of Providencia.The overall number of these Enterobacterales isolates increased significantly over the 7-year period.The top 3 specimen source of these strains were urine,lower respiratory tract specimens,and wound secretions.Proteus,Morganella,and Providencia isolates showed lower resistance rates to amikacin,meropenem,cefoxitin,cefepime,cefoperazone-sulbactam,and piperacillin-tazobactam.For most of the antibiotics tested,less than 10%of the Proteus and Morganella strains were resistant,while less than 20%of the Providencia strains were resistant.The prevalence of carbapenem-resistant Enterobacterales(CRE)was 1.4%in Proteus isolates,1.9%in Morganella isolates,and 15.6%in Providencia isolates.Conclusions The overall number of clinical isolates of Proteus,Morganella and Providencia increased significantly in the 7-year period from 2015 to 2021.The prevalence of CRE strains also increased.More attention should be paid to antimicrobial resistance surveillance and rational antibiotic use so as to prevent the emergence and increase of antimicrobial resistance.


Result Analysis
Print
Save
E-mail