1.The Impairment Attention Capture by Topological Change in Children With Autism Spectrum Disorder
Hui-Lin XU ; Huan-Jun XI ; Tao DUAN ; Jing LI ; Dan-Dan LI ; Kai WANG ; Chun-Yan ZHU
Progress in Biochemistry and Biophysics 2025;52(1):223-232
		                        		
		                        			
		                        			ObjectiveAutism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with communication and social interaction, restricted and repetitive behaviors. Previous studies have indicated that individuals with ASD exhibit early and lifelong attention deficits, which are closely related to the core symptoms of ASD. Basic visual attention processes may provide a critical foundation for their social communication and interaction abilities. Therefore, this study explores the behavior of children with ASD in capturing attention to changes in topological properties. MethodsOur study recruited twenty-seven ASD children diagnosed by professional clinicians according to DSM-5 and twenty-eight typically developing (TD) age-matched controls. In an attention capture task, we recorded the saccadic behaviors of children with ASD and TD in response to topological change (TC) and non-topological change (nTC) stimuli. Saccadic reaction time (SRT), visual search time (VS), and first fixation dwell time (FFDT) were used as indicators of attentional bias. Pearson correlation tests between the clinical assessment scales and attentional bias were conducted. ResultsThis study found that TD children had significantly faster SRT (P<0.05) and VS (P<0.05) for the TC stimuli compared to the nTC stimuli, while the children with ASD did not exhibit significant differences in either measure (P>0.05). Additionally, ASD children demonstrated significantly less attention towards the TC targets (measured by FFDT), in comparison to TD children (P<0.05). Furthermore, ASD children exhibited a significant negative linear correlation between their attentional bias (measured by VS) and their scores on the compulsive subscale (P<0.05). ConclusionThe results suggest that children with ASD have difficulty shifting their attention to objects with topological changes during change detection. This atypical attention may affect the child’s cognitive and behavioral development, thereby impacting their social communication and interaction. In sum, our findings indicate that difficulties in attentional capture by TC may be a key feature of ASD. 
		                        		
		                        		
		                        		
		                        	
2.Temporal-spatial Generation of Astrocytes in the Developing Diencephalon.
Wentong HONG ; Pifang GONG ; Xinjie PAN ; Zhonggan REN ; Yitong LIU ; Guibo QI ; Jun-Liszt LI ; Wenzhi SUN ; Woo-Ping GE ; Chun-Li ZHANG ; Shumin DUAN ; Song QIN
Neuroscience Bulletin 2024;40(1):1-16
		                        		
		                        			
		                        			Astrocytes are the largest glial population in the mammalian brain. However, we have a minimal understanding of astrocyte development, especially fate specification in different regions of the brain. Through lineage tracing of the progenitors of the third ventricle (3V) wall via in-utero electroporation in the embryonic mouse brain, we show the fate specification and migration pattern of astrocytes derived from radial glia along the 3V wall. Unexpectedly, radial glia located in different regions along the 3V wall of the diencephalon produce distinct cell types: radial glia in the upper region produce astrocytes and those in the lower region produce neurons in the diencephalon. With genetic fate mapping analysis, we reveal that the first population of astrocytes appears along the zona incerta in the diencephalon. Astrogenesis occurs at an early time point in the dorsal region relative to that in the ventral region of the developing diencephalon. With transcriptomic analysis of the region-specific 3V wall and lateral ventricle (LV) wall, we identified cohorts of differentially-expressed genes in the dorsal 3V wall compared to the ventral 3V wall and LV wall that may regulate astrogenesis in the dorsal diencephalon. Together, these results demonstrate that the generation of astrocytes shows a spatiotemporal pattern in the developing mouse diencephalon.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Astrocytes
		                        			;
		                        		
		                        			Neuroglia/physiology*
		                        			;
		                        		
		                        			Diencephalon
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			Mammals
		                        			
		                        		
		                        	
3. Effects of Tao Hong Si Wu decoction on IncRNA expression in rats with occlusion of middle cerebral artery
Li-Juan ZHANG ; Chang-Yi FEI ; Chao YU ; Su-Jun XUE ; Yu-Meng LI ; Jing-Jing LI ; Ling-Yu PAN ; Xian-Chun DUAN ; Li-Juan ZHANG ; Chang-Yi FEI ; Chao YU ; Su-Jun XUE ; Yu-Meng LI ; Jing-Jing LI ; Xian-Chun DUAN ; Dai-Yin PENG ; Xian-Chun DUAN ; Dai-Yin PENG
Chinese Pharmacological Bulletin 2024;40(3):582-591
		                        		
		                        			
		                        			 Aim To screen and study the expression of long non-coding RNA (IncRNA) in rats with middle cerebral artery occlusion (MCAO) with MCAO treated with Tao Hong Si Wu decoction (THSWD) and determine the possible molecular mechanism of THSWD in treating MCAO rats. Methods Three cerebral hemisphere tissue were obtained from the control group, MCAO group and MCAO + THSWD group. RNA sequencing technology was used to identify IncRNA gene expression in the three groups. THSWD-regulated IncRNA genes were identified, and then a THSWD-regu-lated IncRNA-mRNA network was constructed. MCODE plug-in units were used to identify the modules of IncRNA-mRNA networks. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) were used to analyze the enriched biological functions and signaling pathways. Cis- and trans-regulatory genes for THSWD-regulated IncRNAs were identified. Reverse transcription real-time quantitative pol-ymerase chain reaction (RT-qPCR) was used to verify IncRNAs. Molecular docking was used to identify IncRNA-mRNA network targets and pathway-associated proteins. Results In MCAO rats, THSWD regulated a total of 302 IncRNAs. Bioinformatics analysis suggested that some core IncRNAs might play an important role in the treatment of MCAO rats with THSWD, and we further found that THSWD might also treat MCAO rats through multiple pathways such as IncRNA-mRNA network and network-enriched complement and coagulation cascades. The results of molecular docking showed that the active compounds gallic acid and a-mygdalin of THSWD had a certain binding ability to protein targets. Conclusions THSWD can protect the brain injury of MCAO rats through IncRNA, which may provide new insights for the treatment of ischemic stroke with THSWD. 
		                        		
		                        		
		                        		
		                        	
4.Scutellarin inhibitting BV-2 microglia-mediated neuroinflammation via the cyclic GMP-AMP synthase-stimulator of interferon gene pathway
Zhao-Da DUAN ; Li YANG ; Hao-Lun CHEN ; Teng-Teng LIU ; Li-Yang ZHENG ; Dong-Yao XU ; Chun-Yun WU
Acta Anatomica Sinica 2024;55(2):133-142
		                        		
		                        			
		                        			Objective To explore the effect of scutellarin on lipopolysaccharide(LPS)induced neuroinflammation in BV-2 microglia cells.Methods BV-2 microglia were cultured and randomly divided into 6 groups:control group(Ctrl),cyclic GMP-AMP synthetase(cGAS)inhibitor RU320521 group(RU.521 group),LPS group,LPS+RU.521 group,LPS+scutellarin pretreatment group(LPS+S)and LPS+S+RU.521 group.The expressions of cGAS,stimulator of interferon gene(STING),nuclear factor kappa B(NF-κB),phosphorylated NF-κB(p-NF-κB),neuroinflammatory factors PYD domains-containing protein 3(NLRP3)and tumor necrosis factor α(TNF-α)in BV-2 microglia were detected by Western blotting and immunofluorescent double staining(n= 3).Results Western blotting and immunofluorescent double staining showed that compared with the control group,the expression of cGAS,STING,p-NF-κB,NLRP3 and TNF-α in BV-2 microglia increased significantly after LPS induction(P<0.05),while the expression of cGAS,STING,p-NF-κB,NLRP3 and TNF-α in LPS+S group were significantly lower than those in LPS group(P<0.05).Treatment with cGAS pathway inhibitor RU.521 showed similar effects as the pre-treatment group with scutellarin.In addition,the change of NF-κB in each group was not statistically significant(P>0.05).Conclusion Scutellarin inhibits the neuroinflammation mediated by BV-2 microglia cells,which may be related to cGAS-STING signaling pathway.
		                        		
		                        		
		                        		
		                        	
5.Next-Generation Patient-Based Real-Time Quality Control Models
Xincen DUAN ; Minglong ZHANG ; Yan LIU ; Wenbo ZHENG ; Chun Yee LIM ; Sollip KIM ; Tze Ping LOH ; Wei GUO ; Rui ZHOU ; Tony BADRICK ;
Annals of Laboratory Medicine 2024;44(5):385-391
		                        		
		                        			
		                        			 Patient-based real-time QC (PBRTQC) uses patient-derived data to assess assay performance. PBRTQC algorithms have advanced in parallel with developments in computer science and the increased availability of more powerful computers. The uptake of Artificial Intelligence in PBRTQC has been rapid, with many stated advantages over conventional approaches. However, until this review, there has been no critical comparison of these. The PBRTQC algorithms based on moving averages, regression-adjusted real-time QC, neural networks and anomaly detection are described and contrasted. As Artificial Intelligence tools become more available to laboratories, user-friendly and computationally efficient, the major disadvantages, such as complexity and the need for high computing resources, are reduced and become attractive to implement in PBRTQC applications. 
		                        		
		                        		
		                        		
		                        	
6.Next-Generation Patient-Based Real-Time Quality Control Models
Xincen DUAN ; Minglong ZHANG ; Yan LIU ; Wenbo ZHENG ; Chun Yee LIM ; Sollip KIM ; Tze Ping LOH ; Wei GUO ; Rui ZHOU ; Tony BADRICK ;
Annals of Laboratory Medicine 2024;44(5):385-391
		                        		
		                        			
		                        			 Patient-based real-time QC (PBRTQC) uses patient-derived data to assess assay performance. PBRTQC algorithms have advanced in parallel with developments in computer science and the increased availability of more powerful computers. The uptake of Artificial Intelligence in PBRTQC has been rapid, with many stated advantages over conventional approaches. However, until this review, there has been no critical comparison of these. The PBRTQC algorithms based on moving averages, regression-adjusted real-time QC, neural networks and anomaly detection are described and contrasted. As Artificial Intelligence tools become more available to laboratories, user-friendly and computationally efficient, the major disadvantages, such as complexity and the need for high computing resources, are reduced and become attractive to implement in PBRTQC applications. 
		                        		
		                        		
		                        		
		                        	
7.Next-Generation Patient-Based Real-Time Quality Control Models
Xincen DUAN ; Minglong ZHANG ; Yan LIU ; Wenbo ZHENG ; Chun Yee LIM ; Sollip KIM ; Tze Ping LOH ; Wei GUO ; Rui ZHOU ; Tony BADRICK ;
Annals of Laboratory Medicine 2024;44(5):385-391
		                        		
		                        			
		                        			 Patient-based real-time QC (PBRTQC) uses patient-derived data to assess assay performance. PBRTQC algorithms have advanced in parallel with developments in computer science and the increased availability of more powerful computers. The uptake of Artificial Intelligence in PBRTQC has been rapid, with many stated advantages over conventional approaches. However, until this review, there has been no critical comparison of these. The PBRTQC algorithms based on moving averages, regression-adjusted real-time QC, neural networks and anomaly detection are described and contrasted. As Artificial Intelligence tools become more available to laboratories, user-friendly and computationally efficient, the major disadvantages, such as complexity and the need for high computing resources, are reduced and become attractive to implement in PBRTQC applications. 
		                        		
		                        		
		                        		
		                        	
8.Next-Generation Patient-Based Real-Time Quality Control Models
Xincen DUAN ; Minglong ZHANG ; Yan LIU ; Wenbo ZHENG ; Chun Yee LIM ; Sollip KIM ; Tze Ping LOH ; Wei GUO ; Rui ZHOU ; Tony BADRICK ;
Annals of Laboratory Medicine 2024;44(5):385-391
		                        		
		                        			
		                        			 Patient-based real-time QC (PBRTQC) uses patient-derived data to assess assay performance. PBRTQC algorithms have advanced in parallel with developments in computer science and the increased availability of more powerful computers. The uptake of Artificial Intelligence in PBRTQC has been rapid, with many stated advantages over conventional approaches. However, until this review, there has been no critical comparison of these. The PBRTQC algorithms based on moving averages, regression-adjusted real-time QC, neural networks and anomaly detection are described and contrasted. As Artificial Intelligence tools become more available to laboratories, user-friendly and computationally efficient, the major disadvantages, such as complexity and the need for high computing resources, are reduced and become attractive to implement in PBRTQC applications. 
		                        		
		                        		
		                        		
		                        	
9.MicroRNA-199a-5p reducing blood-brain barrier disruption following ischemic stroke in rats
Guang-Xiao NI ; Chun-Qiao DUAN ; Lu-Lu KOU ; Ran MENG ; Xiao-Qing WANG ; Pu WANG
Acta Anatomica Sinica 2024;55(4):460-467
		                        		
		                        			
		                        			Objective To investigate whether microRNA(miR)-199a-5p regulates blood-brain barrier(BBB)integrity through PI3K/Akt pathway after cerebral ischemia.Methods A permanent middle cerebral artery occlusion(MCAO)model was established in SPF adult male SD rats.Totally 48 rats were randomly divided into sham group(n=12),model group(n=12),MCAO+miR-199a-5p group(n=12),and MCAO+miR-199a-5p negative control group(n=12).The Ludmila Bellayev 12 point score was used to evaluate the neurobehavioral performance of rats;The integrity of the BBB after ischemia stroke was detected through Evans blue staining;Immunofluorescent staining was used to determine apoptosis after cerebral ischemia;Western blotting technology was used to detect the protein expression of claudin-5,phosphatidylinositol-3 kinase regulatory subunit 2(PIK3R2),p-Akt,Akt,and vascular endothelial growth factor(VEGF)-A;Real-time PCR was used to investigate the expression levels of miR-199a-5p,claudin-5,and VEGF-A in the ischemic penumbra and infarcted area of the brain.Results The result showed that miR-199a-5p mimic intervention improved proprioception and motor ability in MCAO rats.MiR-199a-5p mimic reduced the expression of PIK3R2 following ischemia stroke,activated the Akt signaling pathway,and increased the expression of claudin-5 and VEGF-A in the ischemic penumbra.In addition,miR-199a-5p alleviated inflammation after cerebral ischemia.MiR-199a-5p mimic reduced BBB permeability and reduced neuronal apoptosis after cerebral ischemia.Conclusion MiR-199a-5p can reduce the expression of PIK3R2 following ischemic stroke,activate the Akt signaling pathway,reduce the expression of inflammatory cytokines,and alleviate the damage to the blood-brain barrier.
		                        		
		                        		
		                        		
		                        	
10.Effects of Tao Hong Si Wu decoction on circular RNA expression profiles in rats with middle cerebral artery occlusion
Chang-Yi FEI ; Li-Juan ZHANG ; Ni WANG ; Fu-Rui CHU ; Chao YU ; Su-Jun XUE ; Ling-Yu PAN ; Dai-Yin PENG ; Xian-Chun DUAN
Chinese Pharmacological Bulletin 2024;40(5):954-963
		                        		
		                        			
		                        			Aim To screen and study the effects of Tao Hong Si Wu decoction(THSWD)-mediated treat-ment on circular RNA(circRNA)expression profiles in rats with middle cerebral artery occlusion(MCAO),and investigate the possible roles and molecular mecha-nisms of THSWD.Methods Next-generation RNA sequencing was conducted to identify circRNA expres-sion profiles in MCAO rats after treatment with THSWD and compared with the MCAO model group and control group.Bioinformatics analysis was performed to predict the potential target microRNAs and mRNAs.Gene On-tology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analyses for the potential target mRNAs were applied to explore the potential roles of differentially expressed circRNAs.RT-qPCR was performed to verify circRNAs with significant differences in expression.Results We identified 87 significantly differentially expressed circRNAs between the MCAO group versus the control group,and 86 sig-nificantly differentially expressed circRNAs between the MCAO group versus the THSWD group.respective-ly.Among them,17 circRNAs induced by the MCAO model were reversed via treatment with THSWD.To demonstrate the roles of mRNAs targeted by DECs,the GO and KEGG databases were used.Further analysis revealed that five circRNAs may play important roles in the development of MCAO.Conclusions The com-prehensive expression profile of circRNAs in rats with middle cerebral artery occlusion after THSWD treat-ment is determined for the first time,suggesting that the therapeutic effect of THSWD on MCAO may be a-chieved by regulating the expression of circRNAs.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail