1.Effect of glycosaminoglycans with different degrees of sulfation on chondrogenesis.
Wen ZHENG ; Ming-Xiang CAI ; Huizhen PENG ; Minyi LIU ; Xiangning LIU
West China Journal of Stomatology 2023;41(4):395-404
OBJECTIVES:
This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro.
METHODS:
ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively.
RESULTS:
Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression.
CONCLUSIONS
This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.
Animals
;
Mice
;
Cartilage/metabolism*
;
Cell Differentiation
;
Cells, Cultured
;
Chondrocytes/metabolism*
;
Chondrogenesis/physiology*
;
Glycosaminoglycans/pharmacology*
2.The role of mitochondria in osteogenic, adipogenic and chondrogenic differentiation of mesenchymal stem cells.
Qianqian LI ; Zewen GAO ; Ye CHEN ; Min-Xin GUAN
Protein & Cell 2017;8(6):439-445
Mesenchymal stem cells (MSCs) are progenitors of connective tissues, which have emerged as important tools for tissue engineering due to their differentiation potential along various cell types. In recent years, accumulating evidence has suggested that the regulation of mitochondria dynamics and function is essential for successful differentiation of MSCs. In this paper, we review and provide an integrated view on the role of mitochondria in MSC differentiation. The mitochondria are maintained at a relatively low activity level in MSCs, and upon induction, mtDNA copy number, protein levels of respiratory enzymes, the oxygen consumption rate, mRNA levels of mitochondrial biogenesis-associated genes, and intracellular ATP content are increased. The regulated level of mitochondrial ROS is found not only to influence differentiation but also to contribute to the direction determination of differentiation. Understanding the roles of mitochondrial dynamics during MSC differentiation will facilitate the optimization of differentiation protocols by adjusting biochemical properties, such as energy production or the redox status of stem cells, and ultimately, benefit the development of new pharmacologic strategies in regenerative medicine.
Adipogenesis
;
physiology
;
Animals
;
Cell Differentiation
;
physiology
;
Chondrogenesis
;
physiology
;
Humans
;
Mesenchymal Stem Cells
;
cytology
;
metabolism
;
Mitochondria
;
genetics
;
metabolism
;
Mitochondrial Proteins
;
genetics
;
metabolism
;
Osteogenesis
;
physiology
;
RNA
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Mitochondrial
;
Reactive Oxygen Species
;
metabolism
3.Characterization of the osteogenic potential of mesenchymal stem cells from human periodontal ligament based on cell surface markers.
Ruth ALVAREZ ; Hye-Lim LEE ; Cun-Yu WANG ; Christine HONG
International Journal of Oral Science 2015;7(4):213-219
Mesenchymal stem cell (MSC)-mediated therapy has been shown to be clinically effective in regenerating tissue defects. For improved regenerative therapy, it is critical to isolate homogenous populations of MSCs with high capacity to differentiate into appropriate tissues. The utilization of stem cell surface antigens provides a means to identify MSCs from various tissues. However, few surface markers that consistently isolate highly regenerative MSCs have been validated, making it challenging for routine clinical applications and making it all the more imperative to identify reliable surface markers. In this study, we used three surface marker combinations: CD51/CD140α, CD271, and STRO-1/CD146 for the isolation of homogenous populations of dental mesenchymal stem cells (DMSCs) from heterogeneous periodontal ligament cells (PDLCs). Fluorescence-activated cell sorting analysis revealed that 24% of PDLCs were CD51(+)/CD140α(+), 0.8% were CD271(+), and 2.4% were STRO-1(+)/CD146(+). Sorted cell populations were further assessed for their multipotent properties by inducing osteogenic and chondrogenic differentiation. All three subsets of isolated DMSCs exhibited differentiation capacity into osteogenic and chondrogenic lineages but with varying degrees. CD271(+) DMSCs demonstrated the greatest osteogenic potential with strong induction of osteogenic markers such as DLX5, RUNX2, and BGLAP. Our study provides evidence that surface marker combinations used in this study are sufficient markers for the isolation of DMSCs from PDLCs. These results provide important insight into using specific surface markers for identifying homogenous populations of DMSCs for their improved utilization in regenerative medicine.
Adaptor Proteins, Signal Transducing
;
analysis
;
Adult
;
Aggrecans
;
analysis
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Collagen Type II
;
analysis
;
Core Binding Factor Alpha 1 Subunit
;
analysis
;
Flow Cytometry
;
methods
;
Homeodomain Proteins
;
analysis
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
physiology
;
Multipotent Stem Cells
;
cytology
;
physiology
;
Nerve Tissue Proteins
;
analysis
;
Osteogenesis
;
physiology
;
Periodontal Ligament
;
cytology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
;
SOX9 Transcription Factor
;
analysis
;
Time Factors
;
Transcription Factors
;
analysis
4.Single CD271 marker isolates mesenchymal stem cells from human dental pulp.
Ruth ALVAREZ ; Hye-Lim LEE ; Christine HONG ; Cun-Yu WANG
International Journal of Oral Science 2015;7(4):205-212
Mesenchymal stem cells (MSCs) are a promising tool in regenerative medicine due to their capacity to differentiate into multiple lineages. In addition to MSCs isolated from bone marrow (BMSCs), adult MSCs are isolated from craniofacial tissues including dental pulp tissues (DPs) using various stem cell surface markers. However, there has been a lack of consensus on a set of surface makers that are reproducibly effective at isolating putative multipotent dental mesenchymal stem cells (DMSCs). In this study, we used different combinations of surface markers (CD51/CD140α, CD271, and STRO-1/CD146) to isolate homogeneous populations of DMSCs from heterogeneous dental pulp cells (DPCs) obtained from DP and compared their capacity to undergo multilineage differentiation. Fluorescence-activated cell sorting revealed that 27.3% of DPCs were CD51(+)/CD140α(+), 10.6% were CD271(+), and 0.3% were STRO-1(+)/CD146(+). Under odontogenic conditions, all three subsets of isolated DMSCs exhibited differentiation capacity into odontogenic lineages. Among these isolated subsets of DMSCs, CD271(+) DMSCs demonstrated the greatest odontogenic potential. While all three combinations of surface markers in this study successfully isolated DMSCs from DPCs, the single CD271 marker presents the most effective stem cell surface marker for identification of DMSCs with high odontogenic potential. Isolated CD271(+) DMSCs could potentially be utilized for future clinical applications in dentistry and regenerative medicine.
Adult
;
Adult Stem Cells
;
cytology
;
Antigens, CD
;
analysis
;
Antigens, Surface
;
analysis
;
Biomarkers
;
analysis
;
CD146 Antigen
;
analysis
;
Cell Culture Techniques
;
Cell Differentiation
;
physiology
;
Cell Lineage
;
Cell Separation
;
methods
;
Cells, Cultured
;
Chondrogenesis
;
physiology
;
Dental Pulp
;
cytology
;
Flow Cytometry
;
methods
;
Humans
;
Integrin alphaV
;
analysis
;
Mesenchymal Stromal Cells
;
cytology
;
Multipotent Stem Cells
;
cytology
;
Nerve Tissue Proteins
;
analysis
;
Odontogenesis
;
physiology
;
Receptor, Platelet-Derived Growth Factor alpha
;
analysis
;
Receptors, Nerve Growth Factor
;
analysis
5.Chondrogenesis of periodontal ligament stem cells by transforming growth factor-β3 and bone morphogenetic protein-6 in a normal healthy impacted third molar.
Sunyoung CHOI ; Tae-Jun CHO ; Soon-Keun KWON ; Gene LEE ; Jaejin CHO
International Journal of Oral Science 2013;5(1):7-13
The periodontal ligament-derived mesenchymal stem cell is regarded as a source of adult stem cells due to its multipotency. However, the proof of chondrogenic potential of the cells is scarce. Therefore, we investigated the chondrogenic differentiation capacity of periodontal ligament derived mesenchymal stem cells induced by transforming growth factor (TGF)-β3 and bone morphogenetic protein (BMP)-6. After isolation of periodontal ligament stem cells (PDLSCs) from human periodontal ligament, the cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 20% fetal bovine serum (FBS). A mechanical force initiated chondrogenic differentiation of the cells. For chondrogenic differentiation, 10 µg·L⁻¹ TGF-β3 or 100 µg∙L⁻¹ BMP-6 and the combination treating group for synergistic effect of the growth factors. We analyzed the PDLSCs by fluorescence-activated cell sorting and chondrogenesis were evaluated by glycosaminoglycans assay, histology, immunohistochemistry and genetic analysis. PDLSCs showed mesenchymal stem cell properties proved by FACS analysis. Glycosaminoglycans contents were increased 217% by TGF-β3 and 220% by BMP-6. The synergetic effect of TGF-β3 and BMP-6 were shown up to 281% compared to control. The combination treatment increased Sox9, aggrecan and collagen II expression compared with not only controls, but also TGF-β3 or BMP-6 single treatment dramatically. The histological analysis also indicated the chondrogenic differentiation of PDLSCs in our conditions. The results of the present study demonstrate the potential of the dental stem cell as a valuable cell source for chondrogenesis, which may be applicable for regeneration of cartilage and bone fracture in the field of cell therapy.
Adult Stem Cells
;
physiology
;
Aggrecans
;
analysis
;
Bone Morphogenetic Protein 6
;
pharmacology
;
Cell Culture Techniques
;
Cell Differentiation
;
drug effects
;
Cell Separation
;
Chondrogenesis
;
drug effects
;
physiology
;
Collagen Type II
;
analysis
;
Flow Cytometry
;
Glycosaminoglycans
;
analysis
;
Humans
;
Immunohistochemistry
;
Mesenchymal Stromal Cells
;
drug effects
;
physiology
;
Molar, Third
;
cytology
;
Periodontal Ligament
;
cytology
;
drug effects
;
Reverse Transcriptase Polymerase Chain Reaction
;
SOX9 Transcription Factor
;
analysis
;
Stress, Mechanical
;
Tooth, Impacted
;
pathology
;
Transforming Growth Factor beta3
;
pharmacology
6.Isolation and characterization of equine amniotic membrane-derived mesenchymal stem cells.
Min Soo SEO ; Sang Bum PARK ; Hyung Sik KIM ; Jun Gu KANG ; Joon Seok CHAE ; Kyung Sun KANG
Journal of Veterinary Science 2013;14(2):151-159
Recent studies have shown that mesenchymal stem cells (MSCs) are able to differentiate into multi-lineage cells such as adipocytes, chondroblasts, and osteoblasts. Amniotic membrane from whole placenta is a good source of stem cells in humans. This membrane can potentially be used for wound healing and corneal surface reconstruction. Moreover, it can be easily obtained after delivery and is usually discarded as classified waste. In the present study, we successfully isolated and characterized equine amniotic membrane-derived mesenchymal stem cells (eAM-MSCs) that were cultured and maintained in low glucose Dulbecco's modified Eagle's medium. The proliferation of eAM-MSCs was measured based on the cumulative population doubling level (CPDL). Immunophenotyping of eAM-MSCs by flow cytometry showed that the major population was of mesenchymal origin. To confirm differentiation potential, a multi-lineage differentiation assay was conducted. We found that under appropriate conditions, eAM-MSCs are capable of multi-lineage differentiation. Our results indicated that eAM-MSCs may be a good source of stem cells, making them potentially useful for veterinary regenerative medicine and cell-based therapy.
Adipogenesis
;
Amnion/*cytology/physiology
;
Animals
;
*Cell Differentiation
;
*Cell Lineage
;
Cell Proliferation
;
Chondrogenesis
;
Female
;
Flow Cytometry/veterinary
;
Horses
;
Immunophenotyping/veterinary
;
Mesenchymal Stromal Cells/*cytology/physiology
;
Osteogenesis
7.Small intestine submucosa as a scaffold for cartilage reconstruction in vitro.
Qingquan KONG ; Bo GAO ; Rong XING ; Zhou XIANG ; Zhiming YANG ; Jingcong LUO ; Xiuqun LI
Journal of Biomedical Engineering 2011;28(3):521-525
This paper is aimed to investigate the feasibility of applying the small intestine submucosa (SIS) as the scaffold in constructing tissue engineering cartilage in vitro. We obtained SIS from the small intestine of specific pathogen-free pigs. Then we isolated tunica submucosa layer from the mucosal, muscular, and serosal layers by gentle mechanic abrasion. The SIS was made acellular by combination of detergent and enzyme digestion. The chondrocytes were seeded onto the SIS and were cultured for 3 weeks. The cell growth, attachment and distribution were detected by histochemical stain, immunohistochemical stain and scan electron microscope. The chondrocytes could adhere and grow well on the matrix surface, and synthesize a large of the GAG and type U collagen. However, the chondrocytes grew only on the surface andsuperficial layer of the scaffold, they did not move into the inner part of the scaffold. It could be concluded that SIS has good cellular compatibility without cytotoxicity and provides temporary substrate to which these anchorage-dependent cells can adhere, and stimulate the chondrocytes anchored on the scaffold to proliferate and keep differentiated phenotype. Further study will be needed to promote the ability of chondrocyte chemotaxis in order to distribute the chondrocytes into the whole scaffold uniformly.
Animals
;
Cell Adhesion
;
Cell Culture Techniques
;
Cell Proliferation
;
Chondrocytes
;
cytology
;
Chondrogenesis
;
physiology
;
Intestinal Mucosa
;
cytology
;
Intestine, Small
;
cytology
;
Swine
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
8.In vitro chondrogenesis of the goat bone marrow mesenchymal stem cells directed by chondrocytes in monolayer and 3-dimetional indirect co-culture system.
Jian-Wei LI ; Xiao-Lei GUO ; Chun-la HE ; Yong-Hua TUO ; Zhao WANG ; Jun WEN ; Dan JIN
Chinese Medical Journal 2011;124(19):3080-3086
BACKGROUNDCartilage injury has a very poor capacity for intrinsic regeneration. The cell-based treatment strategy for the cartilage repair using differentiated bone marrow mesenchymal stem cells (BMSCs) is, however, a promising approach to the chondral repair. This study was aimed to explore the chondrogenic potential of the goat BMSCs in the Transwell co-culture system and the poly-laetide-co-glycolide (PLGA) scaffolds.
METHODSThe BMSCs were isolated from the goat iliac crest while the chondrocytes were obtained from the goat's last costal cartilage. In the Transwell co-culture system, the BMSCs co-cultured with chondrocytes were designed as group A, whereas the goat's BMSCs induced with the chondrogenic medium were group B. Both groups A and B were the experimental groups, while group C that only contained BMSCs was the control group. In the PLGA scaffolds co-culture system, BMSCs were seeded into the PLGA scaffolds, which were suspended in the 24-well plate, and the control group was established by presence or absence of chondrocytes at the bottom of the 24-well plate. Toluidine blue staining, Alcian blue staining, collagen II immunofluoresence, collagen II immunochemical staining, collagen I, collagen II, COL2a Q-PCR and osteopontin Q-PCR were used to examine the chondrogenic conditions as well as the expressions of chondrogenic and osteogenic genes.
RESULTSCells isolated from the aspirates of the goat bone marrow proliferated rapidly and gained characteristics of stem cells in Passage 4. However, the differentiations of chondrocytes were not apparent in Passage 3. The results from Toluidine blue staining, collagen II immunofluoresence and PCR showed the transformation of BMSCs to chondrocytes in the Transwell co-culture system and PLGA scaffolds. Although the cartilage gene expressions were upgraded in both chondrogenesis group and co-culture system, the osteopontin gene expression, which represents osteogenic level, was also up-regulated.
CONCLUSIONSThe Transwell co-culture system and the PLGA scaffolds co-culture system can promote the chondrogenic differentiation of the goat's BMSCs, while up-regulated osteopontin gene expression in the Transwell co-culture system implies the osteogenic potential of BMSCs.
Animals ; Bone Marrow Cells ; physiology ; Cell Culture Techniques ; methods ; Chondrocytes ; physiology ; Chondrogenesis ; physiology ; Coculture Techniques ; Goats ; Mesenchymal Stromal Cells ; physiology ; Tissue Engineering ; methods ; Tissue Scaffolds
9.Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice.
Brian E GROTTKAU ; P Prasad PURUDAPPA ; Yun-feng LIN
International Journal of Oral Science 2010;2(1):21-27
AIMThe aim of this study was to confirm the multilineage differentiation ability of dental pulp stem cells (DPSCs) from green fluorescent protein (GFP) transgenic mice. The expression of GFP in DPSCs was also observed during differentiation.
METHODOLOGYDPSCs were harvested from the dental pulp tissue of transgenic nude mice, and then transferred to osteogenic, adipogenic, and chondrogenic media. The morphological characterization of induced cells was observed by microscopy and histological staining. The expression of marker genes was measured by RT-PCR.
RESULTSThe endogenous GFP and multilineage potential of transgenic DPSCs had no influence on each other. Moreover, the results of fluorescence microscopic imaging suggest that there was no significant decline of GFP expression during DPSCs differentiation.
CONCLUSIONAs the population of GFP labeled DPSCs can be easily identified, this will be a promising method for tracking DPSCs in vivo.
Adipocytes ; cytology ; Adipogenesis ; physiology ; Animals ; Anthraquinones ; Azo Compounds ; Cell Culture Techniques ; Cell Differentiation ; physiology ; Cell Lineage ; physiology ; Chondrocytes ; cytology ; Chondrogenesis ; physiology ; Coloring Agents ; Culture Media ; Dental Pulp ; cytology ; Genetic Markers ; genetics ; Green Fluorescent Proteins ; analysis ; genetics ; Mice ; Mice, Nude ; Mice, Transgenic ; Microscopy, Fluorescence ; Osteoblasts ; cytology ; Osteogenesis ; physiology ; RNA ; analysis ; Reverse Transcriptase Polymerase Chain Reaction ; Stem Cells ; cytology ; physiology ; Tissue Culture Techniques ; Tolonium Chloride
10.Isolation and characterization of canine umbilical cord blood-derived mesenchymal stem cells.
Min Soo SEO ; Yun Hyeok JEONG ; Jeung Ran PARK ; Sang Bum PARK ; Kyoung Hwan RHO ; Hyung Sik KIM ; Kyung Rok YU ; Seung Hee LEE ; Ji Won JUNG ; Yong Soon LEE ; Kyung Sun KANG
Journal of Veterinary Science 2009;10(3):181-187
Human umbilical cord blood-derived mesenchymal stem cells (MSCs) are known to possess the potential for multiple differentiations abilities in vitro and in vivo. In canine system, studying stem cell therapy is important, but so far, stem cells from canine were not identified and characterized. In this study, we successfully isolated and characterized MSCs from the canine umbilical cord and its fetal blood. Canine MSCs (cMSCs) were grown in medium containing low glucose DMEM with 20% FBS. The cMSCs have stem cells expression patterns which are concerned with MSCs surface markers by fluorescence-activated cell sorter analysis. The cMSCs had multipotent abilities. In the neuronal differentiation study, the cMSCs expressed the neuronal markers glial fibrillary acidic protein (GFAP), neuronal class III beta tubulin (Tuj-1), neurofilament M (NF160) in the basal culture media. After neuronal differentiation, the cMSCs expressed the neuronal markers Nestin, GFAP, Tuj-1, microtubule-associated protein 2, NF160. In the osteogenic & chondrogenic differentiation studies, cMSCs were stained with alizarin red and toluidine blue staining, respectively. With osteogenic differentiation, the cMSCs presented osteoblastic differentiation genes by RT-PCR. This finding also suggests that cMSCs might have the ability to differentiate multipotentially. It was concluded that isolated MSCs from canine cord blood have multipotential differentiation abilities. Therefore, it is suggested that cMSCs may represent a be a good model system for stem cell biology and could be useful as a therapeutic modality for canine incurable or intractable diseases, including spinal cord injuries in future regenerative medicine studies.
Animals
;
*Cell Differentiation
;
Chondrogenesis
;
Dogs/blood/*physiology
;
Fetal Blood/*cytology
;
Mesenchymal Stem Cells/*cytology
;
Neurons/cytology
;
Osteogenesis

Result Analysis
Print
Save
E-mail