1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.Immunological mechanism of drug-induced liver injury
Yu WANG ; Shuang LI ; Chenghai LIU
Journal of Clinical Hepatology 2024;40(12):2538-2542
Drug-induced liver injury (DILI) has a complex mechanism involving various pathways with a synergistic effect on each other and a causal relationship with each other, among which immune response plays an important role in the pathogenesis of DILI. In the context of genetic background, drug active metabolites, drug-molecule complexes, and danger signal molecules may be used as the trigger factors for immune response in DILI, activating the mechanism of drug antigenic hypersensitivity, P-i hypothesis, and danger signal mechanism in innate immunity. The cascade reaction of innate immunity and adaptive immunity leads to the imbalance of the innate immune tolerance of the liver and thus causes immunoinflammatory injury of liver tissue. This article mainly elaborates on the immunological mechanism of DILI, in order to provide new ideas for the research and development of therapeutic targets for DILI and the methods for avoiding adverse drug reactions.
5.Talaketides A-G,linear polyketides with prostate cancer cytotoxic activity from the mangrove sediment-derived fungus Talaromyces sp.SCSIO 41027
Chunmei CHEN ; Xueni WANG ; Wenxuan FANG ; Jiaqi LIANG ; Jian CAI ; Dehua YANG ; Xiaowei LUO ; Chenghai GAO ; Xiangxi YI ; Yonghong LIU ; Xuefeng ZHOU
Chinese Journal of Natural Medicines (English Ed.) 2024;22(11):1047-1056
Seven novel linear polyketides,talaketides A-G(1-7),were isolated from the rice media cultures of the mangrove sed-iment-derived fungus Talaromyces sp.SCSIO 41027.Among these,talaketides A-E(1-5)represented unprecedented unsaturated lin-ear polyketides with an epoxy ring structure.The structures,including absolute configurations of these compounds,were elucidated through detailed analyses of nuclear magnetic resonance(NMR)and high-resolution mass spectrometry(HR-MS)data,as well as elec-tronic custom distributors(ECD)calculations.In the cytotoxicity screening against prostate cancer cell lines,talaketide E(5)demon-strated a dose-dependent inhibitory effect on prostate cancer PC-3 cell lines,with an IC50 value of 14.44 μmol·L-1.Moreover,com-pound 5 significantly inhibited the cloning formation of PC-3 cell lines and arrested the cell cycle in S-phase,ultimately inducing ap-optosis.These findings indicate that compound 5 may serve as a promising lead compound for the development of a potential treat-ment for prostate cancer.
6.Expression of PIWI-interacting RNA-47851 in gastric adenocarcinoma and its influence on proliferation
Jinli ZHU ; Xinyue QIAO ; Xuebing YAN ; Chenghai WANG
Journal of Clinical Medicine in Practice 2024;28(1):20-27
Objective To investigate the expression and clinical pathological significance of PIWI-interacting RNA-47851 (piR-47851) in gastric adenocarcinoma and its influence on proliferation. Methods The expression of piR-47851 was detected in 79 gastric adenocarcinoma tissues by real time fluorescence quantitative polymerase chain reaction (qRT-PCR), and the correlation of piR-47851 expression level and clinical features with survival and prognosis were analyzed. The effect of piR-47851 on proliferation activity of gastric cancer cells was observed by cell proliferation experiments. Informatics websites were used to predict the downstream target genes of piR-47851. The wild-type and mutant plasmids for the 3'untranslated region (UTR) of
7.Mechanism of hsa_circ_0013058 in promoting invasion and migration of esophageal squamous cell carcinoma
Yan TAN ; Feier TAO ; Chenghai WANG
Journal of Clinical Medicine in Practice 2024;28(7):29-35
Objective To investigate the role of hsa_circ_0013058 in esophageal squamous cell carcinoma (ESCC) and the mechanism in promoting the invasion and migration of ESCC cells. Methods ESCC tissues and adjacent normal tissues of 75 patients were collected. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) and RNA
8.Impact of piR-35296 expression on proliferation in clear cell renal cell carcinoma
Daoji HU ; Yuye WANG ; Xu WANG ; Xuebing YAN ; Chenghai WANG
Journal of Clinical Medicine in Practice 2024;28(18):34-40
Objective To investigate the expression level of piR-35296 in clear cell renal cell carcinoma (ccRCC) and its pathological significance, as well as its effect on ccRCC cell proliferation. Methods Surgical resection specimens and clinicopathological data from 67 ccRCC patients were collected. Differential expression profiles of piRNAs in ccRCC were detected using piRNA microarray analysis, and validated by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The effect of piR-35296 on the proliferative activity of ccRCC cells was examined by CCK-8 assay. Bioinformatic analysis predicted
9.Mechanism of hsa_circRNA_0000596 in promoting invasion and metastasis of cervical cancer cells
Guangfeng ZHANG ; Jue CHEN ; Chenghai WANG
Journal of Clinical Medicine in Practice 2024;28(20):6-11
Objective To investigate the mechanism of hsa_circRNA_000596 (circ-596) in promoting invasion and metastasis of cervical cancer cells. Methods The cervical squamous cell carcinoma (CSCC) tissue, normal cervical tissue adjacent to cancer and clinical data of 69 cases with CSCC were collected. RNA
10.Role of glutathione transferase in nonalcoholic fatty liver disease: An analysis based on gene expression profile
Tingting SHEN ; Gerui ZHU ; Fan WANG ; Xin SUN ; Kai HUANG ; Yuan PENG ; Yanyan TAO ; Chenghai LIU
Journal of Clinical Hepatology 2023;39(1):89-96
Objective To investigate the role of glutathione transferase in nonalcoholic fatty liver disease (NAFLD) induced by high-fat diet using the RNA-Seq technique in combination with gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of differentially expressed genes. Methods A total of 14 male C57BL/6J mice were divided into control group with 6 mice and model group with 8 mice by random sampling. The mice in the control group were fed with normal diet, and those in the model group were fed with high-fat diet for 7 consecutive weeks to establish a model of NAFLD. Kits were used to measure the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and the level of triglyceride (TG), and HE staining and oil red staining were used to observe liver pathology and deposition of lipid droplets. Liver tissue RNA was extracted for RNA-Seq, and genes with a fold change of ≥2.0 and a P value of < 0.05 were defined as differentially expressed genes; after differentially expressed genes were screened out between the control group and the model group, GO and KEGG enrichment analyses were performed, and qRT-PCR was used to validate the expression of the differentially expressed genes. The independent samples t -test was used for comparison of normally distributed continuous data between two groups. Results There were no significant differences between the two groups in body weight and the serum levels of ALT and AST (all P > 0.05). Compared with the control group, the model group had a significantly higher serum level of TG (2.02±0.50 mmol/L vs 1.00±0.29 mmol/L, t =-4.45, P =0.001). HE staining showed diffuse steatosis and ballooning degeneration in the model group, and oil red staining showed that the model group had a significant increase in orange-red lipid droplets in the cytoplasm of hepatocytes and a significantly higher grade of hepatocyte steatosis than the control group (1.88±0.64 vs 1.00±0.00, t =-3.86, P =0.006). RNA-seq results showed a total of 1367 differentially expressed genes between the two groups, among which there were 608 upregulated genes and 759 downregulated genes, and there were 17 differentially expressed GST genes between the two groups. The top 10 GST genes in terms of fold change were validated, and compared with the control group, the model group had downregulated expression of GSTa2, GSTa3, GSTa4, GSTm1, GSTm2, GSTm3, GSTm4, GSTp1, and GSTo1 and upregulated expression of GSTk1. The results of qRT-PCR were consistent with the results of sequencing. Conclusion GST affects lipid metabolism by participating in various biological processes such as steroid metabolism, fatty acid metabolism, and cholesterol metabolism and is closely associated with the pathogenesis of NAFLD.


Result Analysis
Print
Save
E-mail