1.Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats
Lin ZHENG ; Wenjun JIN ; Shanshan LUO ; Rui HUANG ; Jie WANG ; Yuting CHENG ; Zheqing AN ; Yue XIONG ; Zipeng GONG ; Jian LIAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1159-1167
BACKGROUND:Eucommia ulmoides has a certain osteogenic effect,which can promote the proliferation and differentiation of osteoblasts.However,it is unclear whether Eucommia ulmoides has effects on alveolar bone formation and Wnt/β-Catenin signaling pathway. OBJECTIVE:To investigate the mechanism by which Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats based on the Wnt/β-Catenin signaling pathway. METHODS:Sixty female Sprague-Dawley rats were selected and randomly divided into five groups:blank control group,sham-operation group,model group,low-dose group Eucommia ulmoides group,and high-dose Eucommia ulmoides group,with twelve rats in each group.Osteoporosis animal models were constructed by bilateral oophorectomy in the model group and the low-dose and high-dose Eucommia ulmoides groups.The sham-operation group underwent the same method to remove adipose tissue of equal mass around the bilateral ovaries.Three months after surgery,the low-and high-dose Eucommia ulmoides groups were given 2.1 g/kg/d and 4.2 g/kg/d Eucommia ulmoides by gavage,respectively.The sham-operation group and model group were given the same amount of physiological saline by gavage.After 12 weeks of drug intervention,the changes in alveolar bone mass of rats in each group were observed through Micro-CT;hematoxylin-eosin staining was used to observe the pathological structural changes of alveolar bone in rats;enzyme linked immunosorbent assay was used to detect the expression levels of alkaline phosphatase and osteocalcin in the serum of rats;western blot was used to detect the expression levels of β-Catenin and Frizzled9 receptor proteins in the alveolar bone of rats;and real-time fluorescence quantitative PCR was used to detect the expression of osteocalcin,Runt-related transcription factor 2(Runx2),alkaline phosphatase,β-catenin,and frizzled9 mRNAs in alveolar bone tissues of rats. RESULTS AND CONCLUSION:Compared with the blank control group,bone volume fraction,trabecular number,trabecular thickness,and bone mineral density were reduced in the model group(P<0.05),and trabecular separation was elevated(P<0.05).Pathological observation showed that the arrangement of trabeculae was disordered and irregular,the trabeculae were thinned or broken,and the marrow cavity was enlarged in the model group,with a significant reduction in bone volume;the level of alkaline phosphatase in the serum was increased(P<0.05),and the level of osteocalcin was decreased(P<0.05);mRNA expression of alkaline phosphatase,osteocalcin,Runx2,β-catenin,and frizzled9 were decreased(P<0.05);protein expression of β-Catenin and Frizzled9 was decreased(P<0.05).Compared with the model group,the low-and high-dose Eucommia ulmoides groups showed an increase in bone volume fraction,trabecular number,trabecular thickness,and bone mineral density(P<0.05)and a decrease in trabecular separation(P<0.05).In the low-and high-dose Eucommia ulmoides groups,bone trabeculae were slightly aligned and thickened,with a significant increase in bone mass.Compared with the model group,the serum level of alkaline phosphatase was reduced(P<0.05)and the serum level of osteocalcin was elevated(P<0.05)in the low-and high-dose Eucommia ulmoides groups.Compared with the model group,the mRNA expression of alkaline phosphatase,osteocalcin,Runx2,β-catenin,and frizzled9 were increased in the low-and high-dose Eucommia ulmoides groups(P<0.05).Compared with the model group,the protein expression of Frizzled9 was increased in the low-dose Eucommia ulmoides group(P<0.05),while the protein expression of β-Catenin and Frizzled9 was increased in the high-dose Eucommia ulmoides group(P<0.05).Compared with the low-dose Eucommia ulmoides group,the high-dose Eucommia ulmoides group had a more significant improvement in the above indexes.To conclude,Eucommia ulmoides can effectively promote the alveolar bone formation,and its mechanism of action might be related to the activation of the Wnt/β-catenin signaling pathway.
2.Clinicopathological Characteristics of Middle-Aged and Elderly Patients with Colorectal Polyps and Risk Factors of Adenomatous Polyps
Rui CHENG ; Rui GONG ; Wei JIANG ; Shutian ZHANG
Cancer Research on Prevention and Treatment 2025;52(1):19-24
Objective To determine the risk factors related to the occurrence of colorectal adenomatous polyps and provide a basis for early screening, diagnosis, and treatment of colorectal cancer. Methods A total of 1 527 cases of colorectal polyps detected by colonoscopy were selected as the research subjects. Data on sociodemographic information, lifestyle and dietary habits, clinical history, laboratory tests, and endoscopic characteristics were collected. The patients were divided into adenoma and non-adenoma groups based on the pathological type. Multivariate logistic regression analysis was conducted to explore the influence of the above factors on the occurrence of colorectal adenoma. Results Old age (OR: 1.024, 95%CI: 1.001-1.048, P=0.044), high body mass index (OR: 1.046, 95%CI: 1.008-1.087, P=0.020), and a history of smoking (OR: 1.493, 95%CI: 1.035-2.158, P=0.032) were independent risk factors for the occurrence of colorectal adenoma. Patients with better cognitive function had a lower risk of developing colorectal adenoma than those with poorer cognitive function (OR: 0.929, 95%CI: 0.871-0.984, P=0.017). Polyps located in the rectum (OR: 0.396, 95%CI: 0.229-0.677, P=0.001) and those of flat type (OR: 0.531, 95%CI: 0.342-0.810, P=0.004) or laterally spreading type (OR: 0.306, 95%CI:
3.Therapeutic Study on The Inhibition of Neuroinflammation in Ischemic Stroke by Induced Regulatory T Cells
Tian-Fang KANG ; Ai-Qing MA ; Li-Qi CHEN ; Han GONG ; Jia-Cheng OUYANG ; Fan PAN ; Hong PAN ; Lin-Tao CAI
Progress in Biochemistry and Biophysics 2025;52(4):946-956
ObjectiveNeuroinflammation plays a crucial role in both the onset and progression of ischemic stroke, exerting a significant impact on the recovery of the central nervous system. Excessive neuroinflammation can lead to secondary neuronal damage, further exacerbating brain injury and impairing functional recovery. As a result, effectively modulating and reducing neuroinflammation in the brain has become a key therapeutic strategy for improving outcomes in ischemic stroke patients. Among various approaches, targeting immune regulation to control inflammation has gained increasing attention. This study aims to investigate the role of in vitro induced regulatory T cells (Treg cells) in suppressing neuroinflammation after ischemic stroke, as well as their potential therapeutic effects. By exploring the mechanisms through which Tregs exert their immunomodulatory functions, this research is expected to provide new insights into stroke treatment strategies. MethodsNaive CD4+ T cells were isolated from mouse spleens using a negative selection method to ensure high purity, and then they were induced in vitro to differentiate into Treg cells by adding specific cytokines. The anti-inflammatory effects and therapeutic potential of Treg cells transplantation in a mouse model of ischemic stroke was evaluated. In the middle cerebral artery occlusion (MCAO) model, after Treg cells transplantation, their ability to successfully migrate to the infarcted brain region and their impact on neuroinflammation levels were examined. To further investigate the role of Treg cells in stroke recovery, the changes in cytokine expression and their effects on immune cell interactions was analyzed. Additionally, infarct size and behavioral scores were measured to assess the neuroprotective effects of Treg cells. By integrating multiple indicators, the comprehensive evaluation of potential benefits of Treg cells in the treatment of ischemic stroke was performed. ResultsTreg cells significantly regulated the expression levels of both pro-inflammatory and anti-inflammatory cytokines in vitro and in vivo, effectively balancing the immune response and suppressing excessive inflammation. Additionally, Treg cells inhibited the activation and activity of inflammatory cells, thereby reducing neuroinflammation. In the MCAO mouse model, Treg cells were observed to accumulate in the infarcted brain region, where they significantly reduced the infarct size, demonstrating their neuroprotective effects. Furthermore, Treg cell therapy notably improved behavioral scores, suggesting its role in promoting functional recovery, and increased the survival rate of ischemic stroke mice, highlighting its potential as a promising therapeutic strategy for stroke treatment. ConclusionIn vitro induced Treg cells can effectively suppress neuroinflammation caused by ischemic stroke, demonstrating promising clinical application potential. By regulating the balance between pro-inflammatory and anti-inflammatory cytokines, Treg cells can inhibit immune responses in the nervous system, thereby reducing neuronal damage. Additionally, they can modulate the immune microenvironment, suppress the activation of inflammatory cells, and promote tissue repair. The therapeutic effects of Treg cells also include enhancing post-stroke recovery, improving behavioral outcomes, and increasing the survival rate of ischemic stroke mice. With their ability to suppress neuroinflammation, Treg cell therapy provides a novel and effective strategy for the treatment of ischemic stroke, offering broad application prospects in clinical immunotherapy and regenerative medicine.
4.Combination of AAV-delivered tumor suppressor PTEN with anti-PD-1 loaded depot gel for enhanced antitumor immunity.
Yongshun ZHANG ; Lan YANG ; Yangsen OU ; Rui HU ; Guangsheng DU ; Shuang LUO ; Fuhua WU ; Hairui WANG ; Zhiqiang XIE ; Yu ZHANG ; Chunting HE ; Cheng MA ; Tao GONG ; Ling ZHANG ; Zhirong ZHANG ; Xun SUN
Acta Pharmaceutica Sinica B 2024;14(1):350-364
Recent clinical studies have shown that mutation of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) gene in cancer cells may be associated with immunosuppressive tumor microenvironment (TME) and poor response to immune checkpoint blockade (ICB) therapy. Therefore, efficiently restoring PTEN gene expression in cancer cells is critical to improving the responding rate to ICB therapy. Here, we screened an adeno-associated virus (AAV) capsid for efficient PTEN gene delivery into B16F10 tumor cells. We demonstrated that intratumorally injected AAV6-PTEN successfully restored the tumor cell PTEN gene expression and effectively inhibited tumor progression by inducing tumor cell immunogenic cell death (ICD) and increasing immune cell infiltration. Moreover, we developed an anti-PD-1 loaded phospholipid-based phase separation gel (PPSG), which formed an in situ depot and sustainably release anti-PD-1 drugs within 42 days in vivo. In order to effectively inhibit the recurrence of melanoma, we further applied a triple therapy based on AAV6-PTEN, PPSG@anti-PD-1 and CpG, and showed that this triple therapy strategy enhanced the synergistic antitumor immune effect and also induced robust immune memory, which completely rejected tumor recurrence. We anticipate that this triple therapy could be used as a new tumor combination therapy with stronger immune activation capacity and tumor inhibition efficacy.
5.Opinion on the development and research status of intelligent ophthalmology in China
Di GONG ; Wangting LI ; Xiaomeng LI ; Cheng WAN ; Yongjin ZHOU ; Yanwu XU ; Shaochong ZHANG ; Weihua YANG
International Eye Science 2024;24(3):448-452
This paper provides a comprehensive analysis of the current state of intelligent ophthalmology in China, including technological advancements, academic exchange platforms, policy support, future challenges, and potential solutions. Technologically, remarkable progress have been made in various areas of intelligent ophthalmology in China, including diabetic retinopathy, fundus image analysis, and crucial aspects such as quality assessment of medical artificial intelligence products, clinical research methods, technological evaluation, and industrial standards. Researchers are constantly improving the safety and standardization of intelligent ophthalmology technology by formulating clinical application guidelines and standards. Academic exchange platforms have been established to provide extensive collaboration opportunities for professionals across diverse fields, and various academic journals serve as publication platforms for intelligent ophthalmology research. Regarding public policy, the Chinese government has not only established a supportive policy environment for the advancement of intelligent ophthalmology through various documents and regulations, but provided a legal basis and management framework. However, there are still challenges to overcome, such as technological innovation, data privacy and security, outdated regulations, and talent shortages. To tackle these issues, there is a requirement for increased technological research and development, the establishment of regulatory frameworks, talent cultivation, and greater awareness and acceptance of new technologies among patients. By comprehensively addressing these challenges, intelligent ophthalmology in China is expected to continue leading the industry's global development, bringing more innovation and convenience to the field of ophthalmic healthcare.
6.Effect of modified Baduanjin exercise on cardiopulmonary function, motor function and activities of daily living for stroke patients
Junwen CHEN ; Qian CHEN ; Cheng CHEN ; Shuyue LI ; Lingling LIU ; Cunshu WU ; Xiang GONG ; Jun LU ; Guangxu XU
Chinese Journal of Rehabilitation Theory and Practice 2024;30(1):74-80
ObjectiveTo investigate the effect of modified Baduanjin exercise, as an rehabilitation exercise, on cardiopulmonary function, motor function and activities of daily living in patients with stroke. MethodsFrom January to September, 2023, 42 stroke patients in the Nanjing Qixia District Hospital were randomly divided into control group (n = 21) and experimental group (n = 21). The control group received routine rehabilitation, and the experimental group received modified Baduanjin exercise in addition, for four weeks. They were assessed with peak oxygen uptake (VO2peak), anaerobic threshold (AT), peak oxygen pulse (VO2peak/HR), forced vital capacity (FVC), forced expiratory volume in the first second (FEV1), peak expiratory flow (PEF), Fugl-Meyer Assessment-upper extremities (FMA-UE), Berg Balance Scale (BBS) and modified Barthel Index (MBI) before and after intervention. ResultsVO2peak, AT, and the scores of FMA-UE, BBS and MBI improved in the control group after intervention (|t| > 2.256, |Z| > 2.936, P < 0.05); while VO2peak, AT, VO2peak/HR, FVC, FEV1, PEF, and the scores of FMA-UE, BBS and MBI improved in the experimental group (|t| > 4.390, |Z| > 3.451, P < 0.001); and all the indexes were better in the experimental group than in the control group (|t| > 4.136,|Z| > 2.751,P < 0.01), except the scores of BBS and MBI. ConclusionModified Baduanjin exercise can improve the cardiopulmonary function and upper limb motor function for stroke patients.
7.Comparison of the microbiota diversity between autogenous and anautogenous Culex pipiens pallens
Jingjing LEI ; Wenxiang LÜ ; Wenqian WANG ; Haifang WANG ; Xiuxia GUO ; Peng CHENG ; Maoqing GONG ; Lijuan LIU
Chinese Journal of Schistosomiasis Control 2024;36(1):52-58
Objective To investigate the microbiota composition and diversity between autogenous and anautogenous Culex pipiens pallens, so as to provide insights into unraveling the pathogenesis of autogeny in Cx. pipiens pallens. Methods Autogenous and anautogenous adult Cx. pipiens pallens samples were collected at 25 ℃, and the hypervariable regions of the microbial 16S ribosomal RNA (16S rRNA) gene was sequenced on the Illumina NovaSeq 6000 sequencing platform. The microbiota abundance and diversity were evaluated using the alpha diversity index, and the difference in the microbiota structure was examined using the beta diversity index. The microbiota with significant differences in the abundance between autogenous and anautogenous adult Cx. pipiens pallens samples was identified using the linear discriminant analysis effect size (LEfSe). Results The microbiota in autogenous and anautogenous Cx. pipiens pallens samples belonged to 18 phyla, 28 classes, 70 orders, 113 families, and 170 genera, and the dominant phyla included Proteobacteria, Bacteroidetes, and so on. At the genus level, Wolbachia was a common dominant genus, and the relative abundance was (77.6 ± 11.3)% in autogenous Cx. pipiens pallens samples and (47.5 ± 8.5)% in anautogenous mosquito samples, while Faecalibaculum (0.4% ± 0.1%), Dubosiella (0.5% ± 0.0%) and Massilia (0.5% ± 0.1%) were specific species in autogenous Cx. pipiens pallens samples. Alpha diversity analysis showed that higher Chao1 index and ACE index in autogenous Cx. pipiens pallens samples than in anautogenous samples (both P values > 0.05), and lower Shannon index (P > 0.05) and Simpson index (P < 0.05) in autogenous Cx. pipiens pallens samples than in anautogenous samples. LEfSe analysis showed a total of 48 significantly different taxa between autogenous and anautogenous Cx. pipiens pallens samples (all P values < 0.05). Conclusion There is a significant difference in the microbiota diversity between autogenous and anautogenous Cx. pipiens pallens.
8.Analysis of the relationship between KRT15 and KRT18 protein expression and clinicopathological features and prognosis in colorectal cancer tissue
Junhong MENG ; Mingyue GAO ; Cheng GONG ; Xiaoya ZHANG ; Wenjie SHI ; Duxian LIU
International Journal of Laboratory Medicine 2024;45(4):435-440
Objective To investigate the relationship between the expression of keratin 15(KRT15)and keratin 18(KRT18)proteins in colorectal cancer tissue and their clinicopathological features and prognosis.Methods A total of 97 patients with colorectal cancer who underwent surgical treatment in a hospital from June 2018 to June 2019 were selected as the study objects.Immunohistochemistry was used to detect the ex-pression of KRT15 and KRT18 protein in colorectal cancer tissues and adjacent tissues,and the differences of KRT15 and KRT18 protein expression in colorectal cancer patients with different clinicopathological features were compared.The patients with colorectal cancer were followed up for 3 years after discharge,and their o-verall survival(OS)during the follow-up period was analyzed.Kaplan-Meier survival curve and Log-rank test were used to analyze the difference in OS rate among colorectal cancer patients with different KRT15 and KRT18 protein expression.Univariate and multivariate COX proportional regression analysis was performed to analyze the factors affecting the prognosis of patients with colorectal cancer.Results The positive expres-sion rates of KRT15 and KRT18 protein in colorectal cancer tissues were higher than those in adjacent tis-sues,and the difference was statistically significant(P<0.05).The positive expression rates of KRT15 and KRT18 protein in colorectal cancer tissues of patients with low differentiation,TNM Ⅲ stage,perineural inva-sion and preoperative carcinoembryonic antigen(CEA)level ≥5 ng/mL were higher than those of patients with medium-high differentiation,TNM Ⅰ-Ⅱ stage,without perineural invasion and preoperative CEA level<5 ng/mL,the difference was statistically significant(P<0.05).The 3-year OS rates of colorectal cancer patients with positive expression of KRT15 and KRT18 protein were 64.29%and 60.00%respectively,which were lower than those of patients with negative expression of KRT15 and KRT18 protein(83.64%and 85.96%respec-tively),and the difference was statistically significant(x2=6.497,7.987,P<0.05).Multivariate COX pro-portional regression analysis showed that TNM stage Ⅲ,positive expression of KRT15 protein and positive expression of KRT18 protein were risk factors affecting the survival of patients with colorectal cancer(P<0.05).Conclusion The expression of KRT15 and KRT18 protein in colorectal cancer tissues can provide ref-erence for prognosis assessment of patients with colorectal cancer.
9.Bone immunity and bone metabolism
Caopei GUO ; Piaotao CHENG ; Chengbing YANG ; Shouhang GONG ; Jiaze PENG ; Lin ZHANG ; Jiachen PENG
Chinese Journal of Tissue Engineering Research 2024;28(14):2261-2266
BACKGROUND:Osteoporosis is a disease in which bone density and structure are destroyed and fractures are caused by increased bone fragility,leading to high clinical disability and mortality rates. OBJECTIVE:To review the research progress in the role of bone immunity in physiological and pathological processes related to bone metabolism,providing ideas for the research and clinical application of bone immunity in bone diseases. METHODS:The first author searched PubMed and CNKI databases in November 2022 for relevant literature using the keywords of"osteoimmunology,immuno-skeletal interface,bone metabolism,skeletal metabolism,lymphocyte,immune factor"in English and Chinese,respectively.The time range of retrieval was mainly from January 2010 to November 2022,and a small number of classical long-term literatures were included.After reading the topic and abstract for preliminary screening and excluding repetitive studies,low-quality journals and unrelated literature,81 documents were finally included for review. RESULTS AND CONCLUSION:Osteoimmunology refers to that bone and immune cells share the same microenvironment and interact with each other to jointly perform the"bone immune system,"which includes all cells in the bone marrow.Immuno-skeletal interface has protective effects on bone under physiological conditions,but it may lead to bone destruction under pathological conditions.Osteoprotegerin is mainly derived from B cells and can inhibit osteoclast metabolism.However,when the body is in an inflammatory state,T cells and B cells work together to promote bone resorption.In addition,interleukin-1,interleukin-6 and tumor necrosis factor-α regulate the expression of receptor activator of nuclear factor-κB ligand in vivo and affect bone metabolism.In most clinical diseases(such as rheumatoid arthritis,estrogen deficiency,HIV infection,and hyperparathyroidism),the immuno-skeletal interface interacts with the bone immune system,resulting in the regulation of bone metabolism.In terms of clinical prospect,the interaction between bone immunity and bone metabolism should be studied in order to propose new strategies for therapeutic intervention to reduce the risk of fracture.
10.Biological and physicochemical properties of bioactive ion modified brushite cements
Cheng ZENG ; Huanhuan YU ; Yukang GONG ; Chenhao WANG ; Yinen ZHANG ; Wenshan GAO
Chinese Journal of Tissue Engineering Research 2024;28(22):3561-3568
BACKGROUND:As a bone replacement and filling material,calcium phosphate stone bone cement has good biocompatibility,bone conductivity,and other advantages,especially its better biodegradability compared to other calcium phosphate bone cements.It has important application value in bone repair.However,due to its limitations such as insufficient mechanical properties,fast solidification reaction,and poor injection performance,it is currently only suitable for the repair of non weight-bearing bone. OBJECTIVE:To explore the modification of brushite cements with bioactive ions(metal and non metal ions)to expand its application range. METHODS:The author used PubMed,ScienceDirect,CNKI,and WanFang to search the literature published between 2018 and 2023 with the search terms"metal ion,iron,copper,strontium,magnesium,zinc,non-metal ion,modification,bone,brushite cements"in Chinese and"metal ion,iron,Fe,copper,Cu,strontium,Sr,magnesium,Mg,zinc,Zn,non-metal ion,modification,bone,brushite cements"in English.After reading titles and abstracts,the articles were initially screened,and irrelevant and duplicate articles were excluded.Finally,64 articles were included for review. RESULTS AND CONCLUSION:(1)Bioactive ions affect the hydration process of calcium phosphate bone cement.Different ions are substituted by ions and incorporated into the crystal structure of calcium phosphate bone cement,changing the crystal morphology of the cement and causing changes in physical and chemical properties such as setting time,injectability,and compressive strength.(2)Ionic modified calcium phosphate bone cement produces different ion release effects due to different crystal structures.Different types of ions have properties such as promoting angiogenesis/osteogenesis,antibacterial,anti-tumor,etc.In addition,calcium phosphate bone cement has good biodegradability,which has great advantages for the performance of various ions.(3)The physicochemical properties of calcium phosphate bone cement modified with different ions are as follows:iron,copper,strontium,magnesium,zinc,silver,and cobalt can prolong the setting time.Strontium,and magnesium can improve injection performance.Copper,strontium,magnesium,silver and silicon can enhance compressive strength.The ions that can simultaneously improve the three physical and chemical properties of calcium phosphate bone cement include strontium and magnesium.Good physical and chemical properties are a prerequisite for clinical application,so improving the setting time,injectability,compressive strength,and other properties of calcium phosphate bone cement with ions is of great significance for the research and application of bone cement.(4)The biological properties of calcium phosphate bone cement modified with different ions are as follows:copper,strontium,magnesium,zinc,cobalt,lithium,selenium,and silicon have promoting angiogenesis/osteogenic effects.Iron,copper,magnesium,zinc,and silver have antibacterial properties.Magnesium ions have anti-inflammatory properties.Copper and selenium have anti-tumor properties.(5)In summary,magnesium ions can improve the setting time,injectability,and compressive strength of calcium phosphate bone cement,while also promoting neovascularization/osteogenesis,antibacterial properties,and have good application prospects for the treatment of bone defects with concurrent infections.In addition,copper also has anti-tumor properties,so copper ions have great potential in the treatment of bone defects caused by infections and tumors.However,relevant research is still in the basic research stage,and the effects of different ion doping concentrations and synthesis conditions on the physicochemical properties of calcium phosphate bone cement need to be further explored.At the same time,the impact of biological properties also needs to be studied and observed for a longer period of time.

Result Analysis
Print
Save
E-mail