1.Structure and Function of GPR126/ADGRG6
Ting-Ting WU ; Si-Qi JIA ; Shu-Zhu CAO ; De-Xin ZHU ; Guo-Chao TANG ; Zhi-Hua SUN ; Xing-Mei DENG ; Hui ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):299-309
GPR126, also known as ADGRG6, is one of the most deeply studied aGPCRs. Initially, GPR126 was thought to be a receptor associated with muscle development and was primarily expressed in the muscular and skeletal systems. With the deepening of research, it was found that GPR126 is expressed in multiple mammalian tissues and organs, and is involved in many biological processes such as embryonic development, nervous system development, and extracellular matrix interactions. Compared with other aGPCRs proteins, GPR126 has a longer N-terminal domain, which can bind to ligands one-to-one and one-to-many. Its N-terminus contains five domains, a CUB (complement C1r/C1s, Uegf, Bmp1) domain, a PTX (Pentraxin) domain, a SEA (Sperm protein, Enterokinase, and Agrin) domain, a hormone binding (HormR) domain, and a conserved GAIN domain. The GAIN domain has a self-shearing function, which is essential for the maturation, stability, transport and function of aGPCRs. Different SEA domains constitute different GPR126 isomers, which can regulate the activation and closure of downstream signaling pathways through conformational changes. GPR126 has a typical aGPCRs seven-transmembrane helical structure, which can be coupled to Gs and Gi, causing cAMP to up- or down-regulation, mediating transmembrane signaling and participating in the regulation of cell proliferation, differentiation and migration. GPR126 is activated in a tethered-stalk peptide agonism or orthosteric agonism, which is mainly manifested by self-proteolysis or conformational changes in the GAIN domain, which mediates the rapid activation or closure of downstream pathways by tethered agonists. In addition to the tethered short stem peptide activation mode, GPR126 also has another allosteric agonism or tunable agonism mode, which is specifically expressed as the GAIN domain does not have self-shearing function in the physiological state, NTF and CTF always maintain the binding state, and the NTF binds to the ligand to cause conformational changes of the receptor, which somehow transmits signals to the GAIN domain in a spatial structure. The GAIN domain can cause the 7TM domain to produce an activated or inhibited signal for signal transduction, For example, type IV collagen interacts with the CUB and PTX domains of GPR126 to activate GPR126 downstream signal transduction. GPR126 has homology of 51.6%-86.9% among different species, with 10 conserved regions between different species, which can be traced back to the oldest metazoans as well as unicellular animals.In terms of diseases, GPR126 dysfunction involves the pathological process of bone, myelin, embryo and other related diseases, and is also closely related to the occurrence and development of malignant tumors such as breast cancer and colon cancer. However, the biological function of GPR126 in various diseases and its potential as a therapeutic target still needs further research. This paper focuses on the structure, interspecies differences and conservatism, signal transduction and biological functions of GPR126, which provides ideas and references for future research on GPR126.
2.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
3.A systematic evaluation of the public health governance capacity of 40 cities in Jiangsu, Zhejiang, and Anhui Provinces
Huayi ZHANG ; Qingyu ZHOU ; Huihui HUANGFU ; Peiwu SHI ; Qunhong SHEN ; Chaoyang ZHANG ; Zheng CHEN ; Chuan PU ; Lingzhong XU ; Anning MA ; Zhaohui GONG ; Tianqiang XU ; Panshi WANG ; Hua WANG ; Chao HAO ; Zhi HU ; Chengyue LI ; Mo HAO
Shanghai Journal of Preventive Medicine 2025;37(5):451-457
ObjectiveTo systematically evaluate the public health governance capacity of 40 cities in Jiangsu, Zhejiang, and Anhui Provinces, providing a scientific evaluation basis for building a "Healthy Yangtze River Delta". MethodsA comprehensive collection of policy documents, public information reports, and research literature related to public health governance capacity in Jiangsu, Zhejiang, and Anhui Provinces was conducted, totaling 6 920 policy documents, 1 720 information reports, and 1 200 literature pieces. Based on the evaluation standards for an appropriate public health system established by the research team, the basic status of public health governance capacity was assessed to identify the strengths and weaknesses of the 40 cities. ResultsIn 2022, the public health governance capacity score for the 40 cities in Jiangsu, Zhejiang, and Anhui Provinces was (562.5±38.0) points. In terms of specific areas, the emergency response field received the highest score of (791.4±49.7) points, while the chronic disease prevention and control field received the lowest score of (368.2±29.6) points. The Jiangsu-Zhejiang-Anhui region has largely achieved the strategic priority of health, gradually improved public health legal regulations, and established a basic organizational framework with a solid foundation for information and data infrastructure. However, challenges still need to be addressed, such as unstable government funding for public health, unclear departmental responsibilities, and barriers to information interoperability. ConclusionThe public health governance capacity of the 40 cities in Jiangsu, Zhejiang, and Anhui Province has been at a moderate level, but disparities have still existed across regions and fields. In the future, while continuing to deepen existing advantages, it is essential to accurately identify the causes of problems, establish a long-term and stable investment mechanism, enhance information connectivity mechanisms, further clarify departmental responsibilities, and promote the achievement of the "Healthy Yangtze River Delta" goal.
4.High-throughput screening of novel TFEB agonists in protecting against acetaminophen-induced liver injury in mice.
Xiaojuan CHAO ; Mengwei NIU ; Shaogui WANG ; Xiaowen MA ; Xiao YANG ; Hua SUN ; Xujia HU ; Hua WANG ; Li ZHANG ; Ruili HUANG ; Menghang XIA ; Andrea BALLABIO ; Hartmut JAESCHKE ; Hong-Min NI ; Wen-Xing DING
Acta Pharmaceutica Sinica B 2024;14(1):190-206
Macroautophagy (referred to as autophagy hereafter) is a major intracellular lysosomal degradation pathway that is responsible for the degradation of misfolded/damaged proteins and organelles. Previous studies showed that autophagy protects against acetaminophen (APAP)-induced injury (AILI) via selective removal of damaged mitochondria and APAP protein adducts. The lysosome is a critical organelle sitting at the end stage of autophagy for autophagic degradation via fusion with autophagosomes. In the present study, we showed that transcription factor EB (TFEB), a master transcription factor for lysosomal biogenesis, was impaired by APAP resulting in decreased lysosomal biogenesis in mouse livers. Genetic loss-of and gain-of function of hepatic TFEB exacerbated or protected against AILI, respectively. Mechanistically, overexpression of TFEB increased clearance of APAP protein adducts and mitochondria biogenesis as well as SQSTM1/p62-dependent non-canonical nuclear factor erythroid 2-related factor 2 (NRF2) activation to protect against AILI. We also performed an unbiased cell-based imaging high-throughput chemical screening on TFEB and identified a group of TFEB agonists. Among these agonists, salinomycin, an anticoccidial and antibacterial agent, activated TFEB and protected against AILI in mice. In conclusion, genetic and pharmacological activating TFEB may be a promising approach for protecting against AILI.
5. Effects of metabolites of eicosapentaenoic acid on promoting transdifferentiation of pancreatic OL cells into pancreatic β cells
Chao-Feng XING ; Min-Yi TANG ; Qi-Hua XU ; Shuai WANG ; Zong-Meng ZHANG ; Zi-Jian ZHAO ; Yun-Pin MU ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(1):31-38
Aim To investigate the role of metabolites of eicosapentaenoic acid (EPA) in promoting the transdifferentiation of pancreatic α cells to β cells. Methods Male C57BL/6J mice were injected intraperitoneally with 60 mg/kg streptozocin (STZ) for five consecutive days to establish a type 1 diabetes (T1DM) mouse model. After two weeks, they were randomly divided into model groups and 97% EPA diet intervention group, 75% fish oil (50% EPA +25% DHA) diet intervention group, and random blood glucose was detected every week; after the model expired, the regeneration of pancreatic β cells in mouse pancreas was observed by immunofluorescence staining. The islets of mice (obtained by crossing GCG
6.Research progress of natural product evodiamine-based antitumor drug design strategies
Zhe-wei XIA ; Yu-hang SUN ; Tian-le HUANG ; Hua SUN ; Yu-ping CHEN ; Chun-quan SHENG ; Shan-chao WU
Acta Pharmaceutica Sinica 2024;59(3):532-542
Natural products are important sources for the discovery of anti-tumor drugs. Evodiamine is the main alkaloid component of the traditional Chinese herb Wu-Chu-Yu, and it has weak antitumor activity. In recent years, a number of highly active antitumor candidates have been discovered with a significant progress. This article reviews the research progress of evodiamine-based antitumor drug design strategies, in order to provide reference for the development of new drugs with natural products as leads.
7.Cloning and gene functional analysis study of dynamin-related protein GeDRP1E gene in Gastrodia elata
Xin FAN ; Jian-hao ZHAO ; Yu-chao CHEN ; Zhong-yi HUA ; Tian-rui LIU ; Yu-yang ZHAO ; Yuan YUAN
Acta Pharmaceutica Sinica 2024;59(2):482-488
The gene
8.Clinical study on the treatment of distal ulcerative colitis with Ganyu-Pixu by the therapeutic method of Rougan Jianpi and mesalazine enema
Hua HUANG ; Junjie MA ; Qiuwen HUA ; Chao JIN ; Lijiang JI
International Journal of Traditional Chinese Medicine 2024;46(4):444-450
Objective:To evaluate the clinical efficacy of Rougan Jianpi therapy combined with Mesalazine enema in the treatment of distal ulcerative colitis (DUC) with Ganyu-Pixu syndrome.Methods:This study is a prospective parallel randomized controlled study. From November 2021 to May 2022, 115 patients with DUC in Changshu Hospital Affiliated to Nanjing University of Chinese Medicine were selected and randomly divided into a control group of 58 patients and a study group of 57 patients. The control group was treated with Mesalazine enema, and the study group was treated with Rougan Jianpi Decoction on the basis of the control group. Both groups were treated for 8 weeks. The severity of the disease was evaluated by using the Modified Mayo Scale, and the clinical and endoscopic efficacy was evaluated based on the changes in the score before and after treatment. TCM syndromes were scored from four aspects: abdominal pain, diarrhea, mucopurulent bloody stool, Rectal tenesmus, and anal burning. The quality of life was evaluated by using the IBD Quality of Life Scale (IBDQ). The serum TNF-αand IL-10 level were detected by using ELISA method. The adverse reactions during treatment were observed and recorded.Results:The total effective rate of the study group was 91.23% (52/57), while that of the control group was 79.31% (46/58). The difference between the two groups was no statistically significant ( Z=1.47, P=0.143). The proportion of patients in the study group who achieved clinical response[40.35% (23/57) vs. 51.72% (30/58)] and clinical relief [59.65% (34/57) vs. 43.11% (25/58)] the total proportion were significantly higher than those in the control group [100.00% (57/57) vs. 94.83% (55/58); Z=1.97, P=0.049]. The proportion of patients with endoscopic response [52.63% (30/57) vs. 56.90% (33/58)] and mucosal healing [33.33% (19/57) vs. 17.24% (10/58)] the total proportion in the study group were significantly higher than those in the control group [85.96% (49/57) vs. 74.14% (43/58); Z=2.23, P=0.026]. after treatment, the IBDQ score [(194.3±15.1) vs. (172.6±18.4), t=6.90] in the study group was significantly higher than that of the control group. After treatment, the patient's TCM symptom score: mucopurulent bloody stool [(1.7±0.8) vs. (2.0±0.6), t=2.03], rectal tenesmus [(1.5±0.6) vs. (1.8±0.6), t=2.32] and anal burning [(1.3±0.6) vs. (1.6±0.7), t=2.38] in the control group were significantly lower than those in the control group ( P<0.05). The level of IL-10 [(53.3±8.0) ng/L vs. (49.0±6.7) ng/L, t=3.10] in the study group after treatment was higher than that of the control group ( P<0.01), and TNF-α [(28.3±7.9)ng/L vs. (36.8±8.1)ng/L, t=3.58] was lower than that of the control group ( P<0.01). There were no significant adverse reactions observed during the treatment in both groups. Conclusion:Method of Rougan Jianpi combined with mesalazine enema can improve the clinical symptoms of DUC patients, improve clinical efficacy, and have good safety.
9.Efficacy and safety of nicorandil and ticagrelor de-escalation after percutaneous coronary intervention for elderly patients with acute coronary syndrome
Xiang SHAO ; Ning BIAN ; Hong-Yan WANG ; Hai-Tao TIAN ; Can HUA ; Chao-Lian WU ; Bei-Xing ZHU ; Rui CHEN ; Jun-Xia LI ; Tian-Chang LI ; Lu MA
Medical Journal of Chinese People's Liberation Army 2024;49(1):75-81
Objective To explore the efficacy and safety of ticagrelor de-escalation and nicorandil therapy in elderly patients with acute coronary syndrome(ACS)after percutaneous coronary intervention(PCI).Methods A total of 300 elderly patients with ACS were selected from the Sixth and Seventh Medical Center of Chinese PLA General Hospital and Beijing Chaoyang Integrative Medicine Emergency Rescue and First Aid Hospital from November 2016 to June 2019,including 153 males and 147 females,aged>65 years old.All the patients received PCI,and all had double antiplatelet therapy(DAPT)scores≥2 and a new DAPT(PRECISE-DAPT)score of≥25.All patients were divided into two groups by random number table method before operation:ticagrelor group(n=146,ticagrelor 180 mg load dose followed by PCI,and ticagrelor 90 mg bid after surgery)and ticagrelor de-escalation + nicorandil group(n=154,ticagrelor 180 mg load dose followed by PCI,ticagrelor 90 mg bid+nicorandil 5 mg tid after surgery,changed to ticagrelor 60 mg bid+ nicorandil 5 mg tid 6 months later).Follow-up was 12 months.The composite end points of cardiovascular death,myocardial infarction and stroke,the composite end points of mild hemorrhage,minor hemorrhage,other major hemorrhage and major fatal/life-threatening hemorrhage as defined by the PLATO study,and the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding within 12 months in the two groups were observed.Results The comparison of general baseline data between the two groups showed no statistically significant difference(P>0.05).There was also no significant difference in the composite end points of cardiovascular death,myocardial infarction and stroke between the two groups(P>0.05).The cumulative incidence of bleeding events in ticagrelor de-escalation + nicorandil group was significantly lower than that in ticagrelor group(P<0.05),while the composite end points of cardiovascular death,myocardial infarction,stroke and bleeding were also significantly lower than those in tecagrelor group(P<0.05).Conclusion In elderly patients with ACS,the treatment of ticagrelor de-escalation + nicorandil after PCI may not increase the incidence of ischemic events such as cardiovascular death,myocardial infarction or stroke,and it may reduce the incidence of hemorrhagic events.
10.Role and Mechanism of Polyunsaturated Fatty Acids on Potassium Ion Channels
Yu-Jiao SUN ; Chao CHANG ; Zhen-Hua WU ; Yi-Fei ZHANG ; Yu-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(1):5-19
Polyunsaturated fatty acids (PUFAs) have diverse health-promoting effects, such as potentially protecting in immune, nervous, and cardiovascular systems by targeting a variety of sites, including most ion channels. Voltage-gated potassium channels of the KV7 family and large-conductance Ca2+- and voltage-activated K+ (BKCa) channels are expressed in many tissues, therefore, their physiological importance is evident from the various disorders linked to dysfunctional KV7 channels and BKCa channels. Thus, it is extremely important to learn how potassium channels are regulated by PUFAs. The aim of this review is to provide an overview of the effects of PUFAs on KV7 channels and BKCa channels functions, as well as the mechanisms underlying these effects. In summarizing reported effects of PUFAs on KV7 and BKCa channels mediated currents, we generally conclude that PUFAs increase the current amplitude, meanwhile, differential molecular and biophysical mechanisms are associated with the current increase. In KV7 channels the currents increasement are associated with a shift in the voltage dependence of channel opening and increased maximum conductance in KV7 channels, while in BKCa channels, they are associated with destabilization the pore domain closed conformation. Furthermore, PUFA effects are influenced by auxiliary subunits of KV7 and BKCa channels, associate with channels in certain tissues. although findings are conflicting. A better understanding of how PUFAs regulate KV7 and BKCa channels may offer insight into their physiological regulation and may lead to new therapeutic strategies and approaches.

Result Analysis
Print
Save
E-mail