1.Analysis of whole-genome sequences of coxsackievirus A4 strains isolated in Jiangsu Province from 2015 to 2022
Huan FAN ; Changjun BAO ; Liguo ZHU ; Jianli HU ; Hong JI
Chinese Journal of Microbiology and Immunology 2024;44(3):249-258
Objective:To retrospectively analyze the molecular epidemiological features and genetic recombination of coxsackievirus A4 (CVA4) strains isolated in Jiangsu from 2015 to 2022.Methods:Throat or anal swab samples were collected from patients with herpangina or hand, foot and mouth disease (HFMD). Real-time PCR was used to detect CVA4. A comprehensive and systematic phylogenetic analysis was conducted based on 72 whole genomes and 99 VP1 sequences of CVA4 strains. Several bioinformatics software including DNAStar, MEGA7.0 and Similarity plots3.5.1 was used for analysis of homology, genetic recombination and amino acid variation sites.Results:Four genotypes (A, B, C and D) and five sub-genotypes (C1-C5) of CVA4 were identified based on the VP1 nucleotide sequences. C2 was the predominant sub-genotype causing HFMD. The Jiangsu strains showed high homology with the CVA4 prototype in the P1 region, and higher identity with other strains of enterovirus group A (EV-A) in the P2 and P3 regions. Genetic recombination analysis revealed that the Jiangsu strains had three genetic recombination patterns with other EV-A epidemic strains in the P2, P3 and 3′-UTR regions. These recombination patterns took place during the sustained and widespread circulation of CVA4 in people and increased the transmissibility of CVA4.Conclusions:This study analyzes the phylogenetic and molecular features of 28 whole genomes of Jiangsu CVA4 strains, which helps to better understand the genomic diversity of CVA4. By analyzing the genetic recombination and amino acid mutations in the VP1 region, this study elucidates the evolution and transmission of CVA4, which is conducive to the control and prevention of CVA4 infection.
2.Influence of infection frequency and vaccination on virus mutation of SARS-CoV-2
Guo XU ; Huan FAN ; Jianguang FU ; Huiyan YU ; Fei DENG ; Zhuhan DONG ; Shihan ZHANG ; Fengcai ZHU ; Changjun BAO ; Liguo ZHU
Chinese Journal of Experimental and Clinical Virology 2024;38(5):481-488
Objective:To analyze the effects of SARS-CoV-2 infection and vaccination on virus mutation.Methods:The whole genome sequencing sequences of 2 659 local SARS-CoV-2 specimens from Jiangsu Province in 2023 were selected for analysis, and relevant information such as demographic and clinical characteristics were collected, and the effects of infection and vaccination on the genome-wide mutation rate and S gene′s selective pressure of the virus were analyzed by univariate and multivariate linear regression models.Results:The average age of these infected patients was 55.0 (31.0, 74.0) years, 1 150 cases (43.2%) in the age group of ≥60 years, 1 367 cases (51.4%) were males, 2 044 cases (76.9%) had a history of COVID-19 vaccination, and 1 629 cases (61.3%) had the first-time infection. The clinical symptoms of the infected patients were mainly mild, with a total of 2434 cases (91.5%), and 29 cases (1.1%) with severe symptoms or more. The average substitution rate of SARS-CoV-2 was 9.69 (9.38, 9.98)×10 -4 subs/site/year, and the dN/dS value of the S gene was 6.08 (5.56, 8.66), which was significantly greater than that of 1 ( P<0.001), indicating positive selection. The result of univariate and multivariate linear regression model analysis showed that the SARS-CoV-2 substitution rate was higher in those with vaccination history and reinfection, aged 20-30 years, ≥60 years, and the SARS-CoV-2 substitution rate was lower in males with moderate clinical symptoms and severe disease and above. Those with a history of vaccination and reinfection, aged 50-60 years old, ≥60 years old have smaller S gene dN/dS. Conclusions:Under the immune pressure exerted by vaccination and infection, the genome-wide mutation of SARS-COV-2 accelerated, but the non-synonymous mutation rate of the S gene decreased. The mechanism causing these phenomena needs further study.
3.Application of IgG antibody combination of wild strain and epidemic strain of COVID-19 in identifying epidemic Omicron BA.5 strain infection
Jinjin CHU ; Hua TIAN ; Chuchu LI ; Zhifeng LI ; Chen DONG ; Xiaoxiao KONG ; Jiefu PENG ; Ke XU ; Jianli HU ; Changjun BAO ; Liguo ZHU
Chinese Journal of Preventive Medicine 2024;58(9):1354-1359
Objective:To explore the application of COVID-19-specific IgG antibody in identifying epidemic Omicron BA.5 strain infection.Method:Omicron BF.7/BA.5 naturally infected population, healthy population vaccinated with the COVID-19 vaccine, and Omicron BF.7/BA.5 breakthrough cases were enrolled into this study. The serum WT-S-IgG and BA.5-S-IgG were detected by indirect ELISA, and the serum-specific IgG antibody levels of different populations were compared. The application value of the two antibody titers and the ratio of the two antibodies in identifying Omicron BA.5 epidemic strain infection were explored by the ROC curve, aiming to provide technical support for pathogen diagnosis.Results:The antibody titers of WT-S-IgG and BA.5-S-IgG in the breakthrough cases were higher than those in the naturally infected population and the healthy population ( P<0.05). The area under the curve (AUC) of WT-S-IgG and BA.5-S-IgG in identifying epidemic Omicron BA.5 strain infection was 0.947 and 0.961, respectively. The AUC of BA.5-S-IgG and WT-S-IgG antibody titer ratio was 0.873. When the antibody titer ratio was 0.855, the sensitivity and specificity were 80.00% and 90.00%, respectively. According to the interval since the last infection, the AUC of the ratio of BA.5-S-IgG to WT-S-IgG antibody titer to identify the infection of epidemic strains less than 30 days and more than 30 days was 0.887 and 0.863, respectively, and the sensitivity and specificity were both above 80%. Conclusion:Both BA.5-S-IgG and WT-S-IgG, as well as the combination of these two antibodies, are of high value in the identification of epidemic strains.
4.Application of IgG antibody combination of wild strain and epidemic strain of COVID-19 in identifying epidemic Omicron BA.5 strain infection
Jinjin CHU ; Hua TIAN ; Chuchu LI ; Zhifeng LI ; Chen DONG ; Xiaoxiao KONG ; Jiefu PENG ; Ke XU ; Jianli HU ; Changjun BAO ; Liguo ZHU
Chinese Journal of Preventive Medicine 2024;58(9):1354-1359
Objective:To explore the application of COVID-19-specific IgG antibody in identifying epidemic Omicron BA.5 strain infection.Method:Omicron BF.7/BA.5 naturally infected population, healthy population vaccinated with the COVID-19 vaccine, and Omicron BF.7/BA.5 breakthrough cases were enrolled into this study. The serum WT-S-IgG and BA.5-S-IgG were detected by indirect ELISA, and the serum-specific IgG antibody levels of different populations were compared. The application value of the two antibody titers and the ratio of the two antibodies in identifying Omicron BA.5 epidemic strain infection were explored by the ROC curve, aiming to provide technical support for pathogen diagnosis.Results:The antibody titers of WT-S-IgG and BA.5-S-IgG in the breakthrough cases were higher than those in the naturally infected population and the healthy population ( P<0.05). The area under the curve (AUC) of WT-S-IgG and BA.5-S-IgG in identifying epidemic Omicron BA.5 strain infection was 0.947 and 0.961, respectively. The AUC of BA.5-S-IgG and WT-S-IgG antibody titer ratio was 0.873. When the antibody titer ratio was 0.855, the sensitivity and specificity were 80.00% and 90.00%, respectively. According to the interval since the last infection, the AUC of the ratio of BA.5-S-IgG to WT-S-IgG antibody titer to identify the infection of epidemic strains less than 30 days and more than 30 days was 0.887 and 0.863, respectively, and the sensitivity and specificity were both above 80%. Conclusion:Both BA.5-S-IgG and WT-S-IgG, as well as the combination of these two antibodies, are of high value in the identification of epidemic strains.
5.Establishing integrated system-based point-of-care testing method for genotyping of respiratory syncytial virus
Fei DENG ; Liguo ZHU ; Ke XU ; Xian QI ; Huiyan YU ; Shenjiao WANG ; Changjun BAO
Chinese Journal of Microbiology and Immunology 2024;44(8):660-664
Objective:To develop an integrated point-of-care testing (POCT) reagent for genotying respiratory syncytial virus (RSV) and evaluate its performance.Methods:Specific primers and probes were designed based on the conserved sequences of the genomes of RSV A and B as well as ON1 and BA9 genotypes. The PCR reaction system and conditions were optimized. The vitrification technology of reagents and multiplex detection platform were integrated to develop the RSV genotyping POCT reagent. The sensitivity, specificity, reproducibility, and clinical performance of the product were then evaluated.Results:The sensitivity of the developed integrated RSV genotyping POCT reagent reached 500 copies/ml. It exhibited good specificity with no cross-reaction with clinically similar pathogens. The coefficient of variation of Ct values for both inter-batch and intra-batch reproducibility was less than 5%, indicating good reproducibility. In testing 53 clinical samples, the detection results showed high consistency and concordance with the reference reagent, with a positive concordance rate of up to 98.11%.Conclusions:The developed integrated RSV genotyping POCT reagent incorporates nucleic acid extraction, purification, and detection into a single process, achieving a "sample in, result out" workflow. It is simple to operate and provides accurate, reliable, and stable detection results. This product can be used for the genotyping of RSV A and B in POCT, offering support for the prevention, control, and diagnosis of RSV.
6.Cholinergic dysfunction-induced insufficient activation of alpha7 nicotinic acetylcholine receptor drives the development of rheumatoid arthritis through promoting protein citrullination via the SP3/PAD4 pathway.
Changjun LV ; Minghui SUN ; Yilei GUO ; Wenxin XIA ; Simiao QIAO ; Yu TAO ; Yulai FANG ; Qin ZHANG ; Yanrong ZHU ; Yusufu YALIKUN ; Yufeng XIA ; Zhifeng WEI ; Yue DAI
Acta Pharmaceutica Sinica B 2023;13(4):1600-1615
Both cholinergic dysfunction and protein citrullination are the hallmarks of rheumatoid arthritis (RA), but the relationship between the two phenomena remains unclear. We explored whether and how cholinergic dysfunction accelerates protein citrullination and consequently drives the development of RA. Cholinergic function and protein citrullination levels in patients with RA and collagen-induced arthritis (CIA) mice were collected. In both neuron-macrophage coculture system and CIA mice, the effect of cholinergic dysfunction on protein citrullination and expression of peptidylarginine deiminases (PADs) was assessed by immunofluorescence. The key transcription factors for PAD4 expression were predicted and validated. Cholinergic dysfunction in the patients with RA and CIA mice negatively correlated with the degree of protein citrullination in synovial tissues. The cholinergic or alpha7 nicotinic acetylcholine receptor (α7nAChR) deactivation and activation resulted in the promotion and reduction of protein citrullination in vitro and in vivo, respectively. Especially, the activation deficiency of α7nAChR induced the earlier onset and aggravation of CIA. Furthermore, deactivation of α7nAChR increased the expression of PAD4 and specificity protein-3 (SP3) in vitro and in vivo. Our results suggest that cholinergic dysfunction-induced deficient α7nAChR activation, which induces the expression of SP3 and its downstream molecule PAD4, accelerating protein citrullination and the development of RA.
7.lncRNA AC005224.4/miR-140-3p/SNAI2 regulating axis facilitates the invasion and metastasis of ovarian cancer through epithelial-mesenchymal transition.
Tingchuan XIONG ; Yinghong WANG ; Yuan ZHANG ; Jianlin YUAN ; Changjun ZHU ; Wei JIANG
Chinese Medical Journal 2023;136(9):1098-1110
BACKGROUND:
Ovarian cancer is one of the most widespread malignant diseases of the female reproductive system worldwide. The plurality of ovarian cancer is diagnosed with metastasis in the abdominal cavity. Epithelial-mesenchymal transition (EMT) exerts a vital role in tumor cell metastasis. However, it remains unclear whether long non-coding RNA (lncRNA) are implicated in EMT and influence ovarian cancer cell invasion and metastasis. This study was designed to investigate the impacts of lncRNA AC005224.4 on ovarian cancer.
METHODS:
LncRNA AC005224.4, miR-140-3p, and snail family transcriptional repressor 2 ( SNAI2 ) expression levels in ovarian cancer and normal ovarian tissues were determined using real-time quantitative polymerase chain reaction (qRT-PCR). Cell Counting Kit-8 (CCK-8) and Transwell (migration and invasion) assays were conducted to measure SKOV3 and CAOV-3 cell proliferation and metastasis. E-cadherin, N-cadherin, Snail, and Vimentin contents were detected using Western blot. Nude mouse xenograft assay was utilized to validate AC005224.4 effects in vivo . Dual-luciferase reporter gene assay confirmed the targeted relationship between miR-140-3p and AC005224.4 or SNAI2 .
RESULTS:
AC005224.4 and SNAI2 upregulation and miR-140-3p downregulation were observed in ovarian cancer tissues and cells. Silencing of AC005224.4 observably moderated SKOV3 and CAOV-3 cell proliferation, migration, invasion, and EMT process in vitro and impaired the tumorigenesis in vivo . miR-140-3p was a target of AC005224.4 and its reduced expression level was mediated by AC005224.4. miR-140-3p mimics decreased the proliferation, migration, and invasion of ovarian cancer cells. SNAI2 was identified as a novel target of miR-140-3p and its expression level was promoted by either AC005224.4 overexpression or miR-140-3p knockdown. Overexpression of SNAI2 also facilitated ovarian cancer cell viability and metastasis.
CONCLUSION
AC005224.4 was confirmed as an oncogene via sponging miR-140-3p and promoted SNAI2 expression, contributing to better understanding of ovarian cancer pathogenesis and shedding light on exploiting the novel lncRNA-directed therapy against ovarian cancer.
Animals
;
Mice
;
Humans
;
Female
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Ovarian Neoplasms/metabolism*
;
Cell Line, Tumor
;
Epithelial-Mesenchymal Transition/genetics*
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic/genetics*
;
Snail Family Transcription Factors/metabolism*
8.Effect of Bufeitang on Lung-gut Axis in Rats with Lung Qi-deficiency Syndrome of Chronic Obstructive Pulmonary Disease
Junxi SHEN ; Xing ZHU ; Yunzhi CHEN ; Huaiquan LIU ; Cancan CHU ; Yu ZHANG ; Gang SU ; Wen LI ; Changjun XU ; Pingzhen TONG ; Xinran YU ; Guangyong YANG ; Ying DENG
Chinese Journal of Experimental Traditional Medical Formulae 2023;29(7):47-56
ObjectiveTo investigate the effect of Bufeitang on intestinal flora of rats with lung Qi-deficiency syndrome of chronic obstructive pulmonary disease(COPD), and to explore the mechanism of traditional Chinese medicine in regulating intestinal flora and thus restoring the balance of lung-gut axis. MethodA total of 84 rats were randomly divided into 7 groups, including blank group, model group, fecal bacterial transplantation(FMT) group, dexamethasone group and low, medium and high dose groups of Bufeitang, 12 rats in each group. Except for the blank group, cigarette and sawdust fumigation combined with intratracheal instillation of lipopolysaccharide(LPS) were used to establish the COPD rat model with lung Qi-deficiency syndrome in all other groups. The low, medium and high dose groups of Bufeitang were intragastric administrated with Bufeitang(3.645, 7.29, 14.58 g·kg-1), the FMT group was given fecal bacteria liquid enema(10 mL·kg-1), dexamethasone group was given dexamethasone acetate tablet suspension by gavage(0.135 mg·kg-1), the blank group and model group were given equal amount of distilled water. Fresh feces were collected after 28 d of continuous intervention for 16S rRNA gene sequencing. Lung and colon tissues were stained with hematoxylin-eosin(HE) for pathomorphological observation, and enzyme-linked immunosorbent assay (ELISA) was performed to detect the contents of tumor necrosis factor-α(TNF-α) and interleukin-8(IL-8) in lung tissues. ResultCompared with the blank group, the model group showed severe abnormal lung tissue structure with alveolar atrophy and collapse accompanied by severe inflammatory cell infiltration. Compared with the model group, the extent of injury was significantly improved, and inflammatory cell infiltration was reduced with basically normal alveolar structure in the high dose group of Bufeitang. Compared with the blank group, the model group had severely abnormal colonic tissue structure, the epithelial cells in the mucosal layer were eroded and shed, the number of inflammatory cells increased, the submucosal layer was edematous and the gap was enlarged. Compared with the model group, the extent of damage was significantly improved in the medium and high dose groups of Bufeitang, the epithelial cells in the mucosal layer were neatly and closely arranged, with only a small amount of inflammatory cell infiltration and no significant degeneration. Compared with the blank group, the TNF-α and IL-8 levels of lung tissue in the model group were significantly increased(P<0.01). Compared with the model group, the TNF-α and IL-8 levels of lung tissues in the low, medium and high dose groups of Bufeitang were significantly decreased(P<0.01). Bufeitang significantly modulated the number of bacteria species as well as alpha and beta diversity of model rats, corrected the return of intestinal flora to normal abundance and diversity, and positively regulated 4 differential phyla(such as Firmicutes, Proteobacteria) and 13 differential genera(such as Turicibacter, Lactobacillus, Anaerobiospirillum, Intestinimonas) in COPD model rats with lung Qi-deficiency syndrome, and down-regulated 2 carbohydrate metabolic pathway functions, including the pentose phosphate pathway(non-oxidative branch) Ⅰ and the Calvin-Benson-Bassham cycle. ConclusionBufeitang can modulate the abundance and diversity of intestinal flora species, affect the function of metabolic pathways, repair the structure of lung and colon tissues, regulate the level of inflammatory factors, and thus improve COPD with lung Qi-deficiency syndrome. The mechanism may be related to its regulation of inflammation-related intestinal flora to restore the balance of lung-gut axis in COPD with lung Qi-deficiency syndrome.
9.Molecular characteristics of clinically isolated Yersinia in Jiangsu Province from 2017 to 2021
Lu ZHOU ; Xiaoqing CHENG ; Ran DUAN ; Hui ZHONG ; Wenwen ZHU ; Changjun BAO ; Xin WANG ; Zhongming TAN
Chinese Journal of Endemiology 2023;42(3):190-195
Objective:To investigate the distribution and molecular characteristics of Yersinia isolated from diarrhea patients in Jiangsu Province. Methods:From 2017 to 2021, the stool samples of diarrhea patients were collected in Tongshan District of Xuzhou City and Dongtai City of Yancheng City, Jiangsu Province, where the national active monitoring sites of Yersinia enterocolitica, then Yersinia was isolated; meanwhile, suspected Yersinia strains were collected from sentinel hospitals in the province. The DNA of isolated strains was extracted for whole genome resequencing, and the data were uploaded to the EnteroBase database for Yersinia species identification; the original data were cleaned and processed for 16S ribosomal RNA (16S rRNA) gene polymorphism analysis. Five virulence genes (ail, ystA, ystB, yadA, virF) were scanned through the National Center for Biotechnology Information (NCBI) and Pathogen Virulence Factor Database (VFDB), and K-mer Tree was constructed and genomic characteristics were analyzed. Results:From 2017 to 2021, a total of 2 058 stool samples from diarrhea patients were collected, and 57 strains of Yersinia were isolated and identified; meanwhile, two Yersinia strains were collected from the sentinel hospital. Compared with EnteroBase database, 51 strains were identified as Yersinia enterocolitica, 4 strains as Yersinia proxima, 1 strain each as Yersinia aleksiciae, Yersinia massiliensis, Yersinia intermedia and Yersinia canariae. The 16S rRNA gene polymorphism analysis showed that all strains were clustered into 3 groups, which could distinguish Yersinia enterocolitica from other Yersinia. Among the 51 strains of Yersinia enterocolitica, 49 strains were virulence genotype Ⅲ(ail-, ystA-, ystB+, yadA-, virF-), two strains were virulence genotype Ⅱ(ail+, ystA+, ystB-, yadA-, virF-); and 8 other Yersinia strains were virulence genotype Ⅳ (ail-, ystA-, ystB-, yadA-, virF-). K-mer analysis could distinguish Yersinia enterocolitica from other Yersinia, JS-XZ-2020001 strain was far away from other Yersinia enterocolitica isolates, and serotype O8 strains were more concentrated. Conclusions:The clinical isolates of Yersinia enterocolitica from diarrhea patients are mainly Yersinia and other Yersinia co-exist in a small amount in Jiangsu Province, two new Yersinia species ( Yersinia proxima and Yersinia canariae) are discovered. The virulence genotype of Yersinia enterocolitica is mainly type Ⅲ. The 16S rRNA gene polymorphism analysis and K-mer analysis can effectively distinguish Yersinia enterocolitica from other Yersinia.
10.Expert consensus on recombinant B subunit/inactivated whole-cell cholera vaccine in preventing infectious diarrhea of enterotoxigenic Escherichia coli
Chai JI ; Yu HU ; Mingyan LI ; Yan LIU ; Yuyang XU ; Hua YU ; Jianyong SHEN ; Jingan LOU ; Wei ZHOU ; Jie HU ; Zhiying YIN ; Jingjiao WEI ; Junfen LIN ; Zhenyu SHEN ; Ziping MIAO ; Baodong LI ; Jiabing WU ; Xiaoyuan LI ; Hongmei XU ; Jianming OU ; Qi LI ; Jun XIANG ; Chen DONG ; Haihua YI ; Changjun BAO ; Shicheng GUO ; Shaohong YAN ; Lili LIU ; Zengqiang KOU ; Shaoying CHANG ; Shaobai ZHANG ; Xiang GUO ; Xiaoping ZHU ; Ying ZHANG ; Bangmao WANG ; Shuguang CAO ; Peisheng WANG ; Zhixian ZHAO ; Da WANG ; Enfu CHEN
Chinese Journal of Clinical Infectious Diseases 2023;16(6):420-426
Enterotoxigenic Escherichia coli(ETEC)infection can induce watery diarrhea,leading to dehydration,electrolyte disturbance,and even death in severe cases. Recombinant B subunit/inactivated whole-cell cholera(rBS/WC)vaccine is effective in preventing ETEC infectious diarrhea. On the basis of the latest evidence on etiology and epidemiology of ETEC,as well as the effectiveness,safety,and health economics of rBS/WC vaccine,National Clinical Research Center for Child Health(The Children’s Hospital,Zhejiang University School of Medicine)and Zhejiang Provincial Center for Disease Control and Prevention invited experts to develop expert consensus on rBS/WC vaccine in prevention of ETEC infectious diarrhea. It aims to provide the clinicians and vaccination professionals with guidelines on using rBS/WC vaccine to reduce the incidence of ETEC infectious diarrhea.

Result Analysis
Print
Save
E-mail