1.Cyclin D1 immunohistochemical stain as adjunct immunomarker in CD99 positive malignant small round blue cell tumors with primary consideration of Primitive Neuroectodermal Tumor/Ewing Sarcoma in a pediatric tertiary hospital
Marie Janina Gail B. Co ; Ivy Marie Viola-Cruz
The Philippine Children’s Medical Center Journal 2025;21(1):18-26
OBJECTIVES:
This study aimed to evaluate the diagnostic accuracy of Cyclin D1 as an adjunct immunomarker in CD99 positive small round cell neoplasms with primary consideration of PNET/EWS.
MATERIALS AND METHODS:
Tissue from 2017 to 2023 with a histopathologic diagnosis of CD99 positive small round blue cell tumors with primary consideration of Primitive Neuroectodermal Tumor (PNET)/Ewing Sarcoma were retrieved and Cyclin D1 immunohistochemical staining done. Diagnostic accuracy of Cyclin D1 immunostaining was determined by calculating the sensitivity, specificity, positive predictive value, and negative predictive value.
RESULTS:
Cyclin D1 immunohistochemical staining was performed in 19 specimens available, of which 13 yielded a positive result. Of these, 8 had a final histopathologic diagnosis of CD99 positive small round blue cell tumor with primary consideration of PNET/Ewing Sarcoma, resulting in sensitivity of 61.54%, specificity of 100%, positive predictive value of 100% and negative predictive value of 50.0%. The overall accuracy is 72.2%.
CONCLUSION
Cyclin D1 can be used as an adjunct immunomarker to aid in the diagnosis of CD99 positive round cell tumor with primary consideration of PNET/Ewing Sarcoma specifically in resource limited settings where molecular testing is not readily available. Given the high specificity of Cyclin D1 in such cases, it can be used to rule out other small round blue cell tumors that can also stain positive for CD99 such as Rhabdomyosarcoma. However, interpretation must be done in conjunction with the results of other immunohistochemical stains in order to increase its diagnostic accuracy.
Human
;
Male,Female
;
Cells
;
Sarcoma, Ewing
;
Sarcoma
;
Neuroectodermal tumors, Primitive
;
Cyclin D1
2.Optical coherence tomography of the macular ganglion cell complex demonstrating transsynaptic retrograde degeneration from a temporal lobe tumor: A case report.
Jian Carlo R. NARAG ; Franz Marie O. CRUZ
Acta Medica Philippina 2025;59(10):119-124
We report a 39-year-old male who had generalized tonic-clonic seizure with loss of awareness. Investigations led to a diagnosis of a left temporal lobe tumor. He underwent resection of the mass with consequent loss of brain tissue in the temporal lobe and was found to have a complete right homonymous hemianopia in the immediate postoperative period. Macular ganglion cell analysis on optical coherence tomography (OCT) showed homonymous thinning affecting the inferonasal sector in the right eye and inferotemporal sector in the left eye. This case demonstrates transsynaptic retrograde degeneration through the interruption of the inferior optic radiation, and its corresponding effect on the structure and function of the affected retinal field. Temporal lobe lesions may cause not only a homonymous visual f ield defect contralateral to the side of the lesion but also result to homonymous sectoral thinning of the macular ganglion cell complexes in both eyes located ipsilateral to the side of the lesion.
Human ; Male ; Adult: 25-44 Yrs Old ; Retinal Ganglion Cells ; Hemianopsia ; Temporal Lobe
4.Optical coherence tomography of the macular ganglion cell complex demonstrating transsynaptic retrograde degeneration from a temporal lobe tumor: A case report
Jian Carlo R. Narag ; Franz Marie O. Cruz
Acta Medica Philippina 2024;58(Early Access 2024):1-6
We report a 39-year-old male who had generalized tonic-clonic seizure with loss of awareness. Investigations led to a diagnosis of a left temporal lobe tumor. He underwent resection of the mass with consequent loss of brain tissue in the temporal lobe and was found to have a complete right homonymous hemianopia in the immediate postoperative period. Macular ganglion cell analysis on optical coherence tomography (OCT) showed homonymous thinning affecting the inferonasal sector in the right eye and inferotemporal sector in the left eye. This case demonstrates transsynaptic retrograde degeneration through the interruption of the inferior optic radiation, and its corresponding effect on the structure and function of the affected retinal field. Temporal lobe lesions may cause not only a homonymous visual f ield defect contralateral to the side of the lesion but also result to homonymous sectoral thinning of the macular ganglion cell complexes in both eyes located ipsilateral to the side of the lesion.
Human
;
retinal ganglion cells
;
hemianopsia
;
temporal lobe
5.TREM-2 Drives Development of Multiple Sclerosis by Promoting Pathogenic Th17 Polarization.
Siying QU ; Shengfeng HU ; Huiting XU ; Yongjian WU ; Siqi MING ; Xiaoxia ZHAN ; Cheng WANG ; Xi HUANG
Neuroscience Bulletin 2024;40(1):17-34
Multiple sclerosis (MS) is a neuroinflammatory demyelinating disease, mediated by pathogenic T helper 17 (Th17) cells. However, the therapeutic effect is accompanied by the fluctuation of the proportion and function of Th17 cells, which prompted us to find the key regulator of Th17 differentiation in MS. Here, we demonstrated that the triggering receptor expressed on myeloid cells 2 (TREM-2), a modulator of pattern recognition receptors on innate immune cells, was highly expressed on pathogenic CD4-positive T lymphocyte (CD4+ T) cells in both patients with MS and experimental autoimmune encephalomyelitis (EAE) mouse models. Conditional knockout of Trem-2 in CD4+ T cells significantly alleviated the disease activity and reduced Th17 cell infiltration, activation, differentiation, and inflammatory cytokine production and secretion in EAE mice. Furthermore, with Trem-2 knockout in vivo experiments and in vitro inhibitor assays, the TREM-2/zeta-chain associated protein kinase 70 (ZAP70)/signal transducer and activator of transcription 3 (STAT3) signal axis was essential for Th17 activation and differentiation in EAE progression. In conclusion, TREM-2 is a key regulator of pathogenic Th17 in EAE mice, and this sheds new light on the potential of this therapeutic target for MS.
Animals
;
Humans
;
Mice
;
CD4-Positive T-Lymphocytes/pathology*
;
Cell Differentiation
;
Encephalomyelitis, Autoimmune, Experimental/metabolism*
;
Mice, Inbred C57BL
;
Multiple Sclerosis
;
Th1 Cells/pathology*
6.Stem Cell-Based Hair Cell Regeneration and Therapy in the Inner Ear.
Jieyu QI ; Wenjuan HUANG ; Yicheng LU ; Xuehan YANG ; Yinyi ZHOU ; Tian CHEN ; Xiaohan WANG ; Yafeng YU ; Jia-Qiang SUN ; Renjie CHAI
Neuroscience Bulletin 2024;40(1):113-126
Hearing loss has become increasingly prevalent and causes considerable disability, thus gravely burdening the global economy. Irreversible loss of hair cells is a main cause of sensorineural hearing loss, and currently, the only relatively effective clinical treatments are limited to digital hearing equipment like cochlear implants and hearing aids, but these are of limited benefit in patients. It is therefore urgent to understand the mechanisms of damage repair in order to develop new neuroprotective strategies. At present, how to promote the regeneration of functional hair cells is a key scientific question in the field of hearing research. Multiple signaling pathways and transcriptional factors trigger the activation of hair cell progenitors and ensure the maturation of newborn hair cells, and in this article, we first review the principal mechanisms underlying hair cell reproduction. We then further discuss therapeutic strategies involving the co-regulation of multiple signaling pathways in order to induce effective functional hair cell regeneration after degeneration, and we summarize current achievements in hair cell regeneration. Lastly, we discuss potential future approaches, such as small molecule drugs and gene therapy, which might be applied for regenerating functional hair cells in the clinic.
Infant, Newborn
;
Humans
;
Hair Cells, Auditory, Inner/physiology*
;
Ear, Inner/physiology*
;
Hair Cells, Auditory/physiology*
;
Regeneration/genetics*
;
Stem Cells
7.Neural Stem Cell Competition.
Neuroscience Bulletin 2024;40(2):277-279
8.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
9.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Humans
;
Vascular Endothelial Growth Factor A/metabolism*
;
Endothelial Cells/metabolism*
;
Transcription Factors/metabolism*
;
Gene Expression Regulation
;
Hypoxia/metabolism*
;
Cell Hypoxia/physiology*
10.BMP7 expression in mammalian cortical radial glial cells increases the length of the neurogenic period.
Zhenmeiyu LI ; Guoping LIU ; Lin YANG ; Mengge SUN ; Zhuangzhi ZHANG ; Zhejun XU ; Yanjing GAO ; Xin JIANG ; Zihao SU ; Xiaosu LI ; Zhengang YANG
Protein & Cell 2024;15(1):21-35
The seat of human intelligence is the human cerebral cortex, which is responsible for our exceptional cognitive abilities. Identifying principles that lead to the development of the large-sized human cerebral cortex will shed light on what makes the human brain and species so special. The remarkable increase in the number of human cortical pyramidal neurons and the size of the human cerebral cortex is mainly because human cortical radial glial cells, primary neural stem cells in the cortex, generate cortical pyramidal neurons for more than 130 days, whereas the same process takes only about 7 days in mice. The molecular mechanisms underlying this difference are largely unknown. Here, we found that bone morphogenic protein 7 (BMP7) is expressed by increasing the number of cortical radial glial cells during mammalian evolution (mouse, ferret, monkey, and human). BMP7 expression in cortical radial glial cells promotes neurogenesis, inhibits gliogenesis, and thereby increases the length of the neurogenic period, whereas Sonic Hedgehog (SHH) signaling promotes cortical gliogenesis. We demonstrate that BMP7 signaling and SHH signaling mutually inhibit each other through regulation of GLI3 repressor formation. We propose that BMP7 drives the evolutionary expansion of the mammalian cortex by increasing the length of the neurogenic period.
Animals
;
Mice
;
Humans
;
Ependymoglial Cells/metabolism*
;
Hedgehog Proteins/metabolism*
;
Ferrets/metabolism*
;
Cerebral Cortex
;
Neurogenesis
;
Mammals/metabolism*
;
Neuroglia/metabolism*
;
Bone Morphogenetic Protein 7/metabolism*


Result Analysis
Print
Save
E-mail