1.Fibrocartilaginous mesenchymoma: a clinicopathological analysis of four cases.
Jin HUANG ; Yan Li LUO ; Yue Qing BAI ; Qiong JIAO ; Jie CHEN ; Zhi Ming JIANG ; Zhi Yan LIU ; Hui Zhen ZHANG
Chinese Journal of Pathology 2023;52(1):25-30
Objective: To investigate the clinical, radiological, histological and molecular features and the differential diagnosis of fibrocartilaginous mesenchymoma (FM). Methods: Four cases of FM diagnosed in the Department of Pathology, the Sixth People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine from 2020 to 2022 were analyzed. Related literature was also reviewed. Results: Case 1 was a 10-year-old girl with bone destruction in the sacrum and L5 articular processes revealed by CT scan. Case 2 was a 7-year-old girl with an aggressive lesion in her right distal ulna. Case 3 was an 11-year-old boy with a lesion in the metaphysis of his left proximal tibia. Case 4 was an 11-year-old boy with bone destruction in the distal portion of a radius. Microscopically, the four tumors all consisted of numerous spindle cells, hyaline cartilage nodules, and bone trabeculae. The hypocellular to moderately cellular spindle cell component contained elongated cells with slightly hyperchromatic, mildly atypical nuclei arranged in bundles or intersecting fascicles. Benign-appearing cartilaginous nodules of various sizes and shapes were scattered throughout the tumors. There were areas mimicking epiphyseal growth-plate characterized by chondrocytes arranged in parallel columns and areas of enchondral ossification. The stroma was rich in mucus in case 1. Mutation of GNAS and IDH1/IDH2 and amplification of MDM2 gene were not found in any of the three tested cases. Conclusions: FM is very rare and tends to affect young patients. It most frequently occurs in the metaphysis of long tubular bones, followed by the iliac-pubic bones and vertebrae. FM is characterized by a mixed population of spindle cells, hyaline cartilage nodules and trabeculae of bone, without specific immunophenotypes and molecular alternations. As a borderline, locally aggressive neoplasm, surgical removal with a wide margin is generally the treatment of choice for FM.
Humans
;
Male
;
Female
;
Child
;
Mesenchymoma/pathology*
;
China
;
Osteogenesis
;
Cartilage/pathology*
;
Tomography, X-Ray Computed
2.Applicatoin of chitosan-based hydrogel in oral tissue engineering.
Yujie WANG ; Jielin ZOU ; Mingxuan CAI ; Yifan WANG ; Jing MAO ; Xin SHI
Journal of Central South University(Medical Sciences) 2023;48(1):138-147
Pulpitis, periodontitis, jaw bone defect, and temporomandibular joint damage are common oral and maxillofacial diseases in clinic, but traditional treatments are unable to restore the structure and function of the injured tissues. Due to their good biocompatibility, biodegradability, antioxidant effect, anti-inflammatory activity, and broad-spectrum antimicrobial property, chitosan-based hydrogels have shown broad applicable prospects in the field of oral tissue engineering. Quaternization, carboxymethylation, and sulfonation are common chemical modification strategies to improve the physicochemical properties and biological functions of chitosan-based hydrogels, while the construction of hydrogel composite systems via carrying porous microspheres or nanoparticles can achieve local sequential delivery of diverse drugs or bioactive factors, laying a solid foundation for the well-organized regeneration of defective tissues. Chemical cross-linking is commonly employed to fabricate irreversible permanent chitosan gels, and physical cross-linking enables the formation of reversible gel networks. Representing suitable scaffold biomaterials, several chitosan-based hydrogels transplanted with stem cells, growth factors or exosomes have been used in an attempt to regenerate oral soft and hard tissues. Currently, remarkable advances have been made in promoting the regeneration of pulp-dentin complex, cementum-periodontium-alveolar bone complex, jaw bone, and cartilage. However, the clinical translation of chitosan-based hydrogels still encounters multiple challenges. In future, more in vivo clinical exploration under the conditions of oral complex microenvironments should be performed, and the combined application of chitosan-based hydrogels and a variety of bioactive factors, biomaterials, and state-of-the-art biotechnologies can be pursued in order to realize multifaceted complete regeneration of oral tissue.
Chitosan/chemistry*
;
Tissue Engineering
;
Hydrogels/chemistry*
;
Biocompatible Materials/chemistry*
;
Cartilage
;
Tissue Scaffolds/chemistry*
3.A case report of primary extubation by partial cricotracheal resection for severe subglottic stenosis.
Qingxiang ZHANG ; Yaqun LIU ; Jie MENG ; Mingjing CAI ; Dongdong HUANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):924-926
This patient suffered from severe subglottic stenosis(grade Ⅳb). During partial cricotracheal resection, we cut through the cricothyroid membrane and the cricoid arch along the line from the lower edge of the thyroid cartilage to 5 mm of the inferior thyroid cartilage corner anteromedially. This can protect the cricothyroid joint, effectively protect the recurrent laryngeal nerve, and also support the airway. Strictly adhere to airway separation, avoid excessive separation of scars, and combine with reasonable postoperative management to achieve a safe extubation.
Humans
;
Constriction, Pathologic/surgery*
;
Trachea/surgery*
;
Airway Extubation
;
Laryngostenosis/surgery*
;
Larynx/surgery*
;
Cricoid Cartilage/surgery*
;
Treatment Outcome
4.Effect of glycosaminoglycans with different degrees of sulfation on chondrogenesis.
Wen ZHENG ; Ming-Xiang CAI ; Huizhen PENG ; Minyi LIU ; Xiangning LIU
West China Journal of Stomatology 2023;41(4):395-404
OBJECTIVES:
This study aims to investigate the effects and mechanisms of chondroitin sulfate (CS), dermatan sulfate (DS), and heparin (HEP) on chondrogenesis of murine chondrogenic cell line (ATDC5) cells and the maintenance of murine articular cartilage in vitro.
METHODS:
ATDC5 and articular cartilage tissue explant were cultured in the medium containing different sulfated glycosaminoglycans. Cell proliferation, differentiation, cartilage formation, and mechanism were observed using cell proliferation assay, Alcian blue staining, real-time quantitative polymerase chain reaction (RT-qPCR), and Western blot, respectively.
RESULTS:
Results showed that HEP and DS primarily activated the bone morphogenetic protein (BMP) signal pathway, while CS primarily activated the protein kinase B (AKT) signal pathway, further promoted ATDC5 cell proliferation and matrix production, and increased Sox9, Col2a1, and Aggrecan expression.
CONCLUSIONS
This study investigated the differences and mechanisms of different sulfated glycosaminoglycans in chondrogenesis and cartilage homeostasis maintenance. HEP promotes cartilage formation and maintains the normal state of cartilage tissue in vitro, while CS plays a more effective role in the regeneration of damaged cartilage tissue.
Animals
;
Mice
;
Cartilage/metabolism*
;
Cell Differentiation
;
Cells, Cultured
;
Chondrocytes/metabolism*
;
Chondrogenesis/physiology*
;
Glycosaminoglycans/pharmacology*
5.Research progress of chondrocyte mechanotransduction mediated by TRPV4 and PIEZOs.
Qiang ZHANG ; K Tawiah GODFRED ; Yanjun ZHANG ; Xiaochun WEI ; Weiyi CHEN ; Quanyou ZHANG
Journal of Biomedical Engineering 2023;40(4):638-644
Mechanical signal transduction are crucial for chondrocyte in response to mechanical cues during the growth, development and osteoarthritis (OA) of articular cartilage. Extracellular matrix (ECM) turnover regulates the matrix mechanical microenvironment of chondrocytes. Thus, understanding the mechanotransduction mechanisms during chondrocyte sensing the matrix mechanical microenvironment can develop effective targeted therapy for OA. In recent decades, growing evidences are rapidly advancing our understanding of the mechanical force-dependent cartilage remodeling and injury responses mediated by TRPV4 and PIEZOs. In this review, we highlighted the mechanosensing mechanism mediated by TRPV4 and PIEZOs during chondrocytes sensing mechanical microenvironment of the ECM. Additionally, the latest progress in the regulation of OA by inflammatory signals mediated by TRPV4 and PIEZOs was also introduced. These recent insights provide the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA. This review will shed light on the pathogenesis of articular cartilage, searching clinical targeted therapies, and designing cell-induced biomaterials.
Chondrocytes
;
TRPV Cation Channels
;
Mechanotransduction, Cellular
;
Biocompatible Materials
;
Cartilage, Articular
6.Research progress in nipple projection reconstruction based on tissue graft support.
Xiaoshan ZHANG ; Chengliang DENG
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(8):1031-1036
OBJECTIVE:
To review the advances in methods for reconstructing nipple projection based on tissue graft support.
METHODS:
The literature related to nipple projection reconstruction based on tissue graft support was reviewed and summarized in terms of the advantages and disadvantages of various tissue grafts and the improved nipple projection results.
RESULTS:
Loss of nipple projection is a common cause of decreased patient's satisfaction. Reconstructing nipple projection based on tissue graft support is a more common clinical method and can be done with autologous and allogeneic tissues. Autologous tissue grafts include dermis, adipose tissue with dermis, adipose tissue, ear cartilage, rib cartilage, and contralateral nipple tissue. Autologous tissue grafts are easy to obtain and have no immune rejection, but may lead to donor area damage and prolong the surgical time for tissue collection. Allogeneic tissue grafts include acellular dermal matrix, lyophilized rib cartilage, and extracellular matrix collagen, and decellularized nipple tissue. Allogeneic tissue grafts do not cause additional donor area damage, are highly malleable, and can be designed to be utilized according to the recipient area, but the high cost often limits the development of this technique.
CONCLUSION
There is no gold standard regarding tissue graft-assisted nipple projection reconstruction techniques, and there are advantages and disadvantages to both autologous and allogeneic tissue grafts. Surgeons should choose the appropriate graft based on the actual condition of the patient.
Humans
;
Adipose Tissue
;
Autografts
;
Costal Cartilage
;
Nipples/surgery*
;
Transplants
7.Bone/cartilage immunomodulating hydrogels: construction strategies and applications.
Maoyuan LI ; Guoshuang ZHENG ; Jiahui YANG ; Xiaofang CHEN ; Jianfeng XU ; Dewei ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(11):1423-1430
OBJECTIVE:
To review the research progress in the construction strategy and application of bone/cartilage immunomodulating hydrogels.
METHODS:
The literature related to bone/cartilage immunomodulating hydrogels at home and abroad in recent years was reviewed and summarized from the immune response mechanism of different immune cells, the construction strategy of immunomodulating hydrogels, and their practical applications.
RESULTS:
According to the immune response mechanism of different immune cells, the biological materials with immunoregulatory effect is designed, which can regulate the immune response of the body and thus promote the regeneration of bone/cartilage tissue. Immunomodulating hydrogels have good biocompatibility, adjustability, and multifunctionality. By regulating the physical and chemical properties of hydrogel and loading factors or cells, the immune system of the body can be purposively regulated, thus forming an immune microenvironment conducive to osteochondral regeneration.
CONCLUSION
Immunomodulating hydrogels can promote osteochondral repair by affecting the immunomodulation process of host organs or cells. It has shown a wide application prospect in the repair of osteochondral defects. However, more data support from basic and clinical experiments is needed for this material to further advance its clinical translation process.
Hydrogels
;
Cartilage
;
Bone and Bones
;
Tissue Engineering/methods*
8.Analysis of the correlation between media meniscus displacement index and medial tibiofemoral articular cartilage damage.
China Journal of Orthopaedics and Traumatology 2023;36(10):965-969
OBJECTIVE:
To investigate the correlation between the medial meniscal indentation index (MDI) and medial tibiofemoral articular cartilage damage more than 3 degrees in patients aged 40 to 60 years old with suspected or complicated knee osteoarthritis at non-weight-bearing position, and to determine the predictive threshold.
METHODS:
From June 2016 to June 2020, a total of 308 patients who underwent initial knee arthroscopic exploration for chronic knee pain were collected. The age ranged from 36 to 71 years old with an average of(56.40±1.82) years old, including 105 males and 203 females. And patients with extra-articular malformations (abnormal force lines), a history of trauma, inflammatory arthritis and other specific arthritis were excluded. Finally, 89 eligible cases were obtained, aged from 42 to 60 years old with an average of (59.50±0.71) years old, including 45 males and 44 females. The degree of cartilage damage in the medial compartment of the knee joint was recorded, which was divided into two groups(≥degree 3 and
Male
;
Female
;
Humans
;
Adult
;
Middle Aged
;
Aged
;
Osteoarthritis, Knee/surgery*
;
Cartilage, Articular/surgery*
;
Knee Joint/surgery*
;
Meniscus
;
Menisci, Tibial/surgery*
;
Cartilage Diseases
;
Magnetic Resonance Imaging/adverse effects*
9.Salvianolic acid A contributes to cartilage endplate cell restoration by regulating miR-940 and miR-576-5p.
Jia-Wen ZHAN ; Shang-Quan WANG ; Ming CHEN ; Kai SUN ; Jie YU ; Ling-Hui LI ; Wu SUN ; Xin CHEN ; Chu-Hao CAI ; Wei-Ye ZHANG ; Tao HAN ; Yu-Hui YIN ; Bin TANG ; Li-Guo ZHU
China Journal of Orthopaedics and Traumatology 2023;36(10):982-989
OBJECTIVE:
To investigate whether Salvianolic acid A (SAA) can restore cartilage endplate cell degeneration of intervertebral discs and to identify the mechanism via regulation of micro-RNA.
METHODS:
Cartilage endplate cells were isolated from lumbar intervertebral disc surgical samples and were treated with serum containing a series of concentrations of SAA (2, 5, and 10 ?M) for 24, 48, and 72 h to identify a proper dose and treatment time of SAA. The effect SAA on interlenkin-1β (IL-1β)-induced extracellular matrix degradation of cartilage endplate cells were analyzed by Alcian blue staining and assessment of the expression levels of ADAMTS-5, MMP3 and Col2a1. Further, the potential target miRNAs were preliminarily screened by micro-RNA sequencing combining qRT-PCR and Western blot, and then, the miRNAs mimics and inhibitors were used to verify the regulatory effect of SAA on potential target miRNAs.
RESULTS:
The 10 μM SAA treatment for 48 h significantly enhanced the viability of cartilage endplate cells, and increased Col2a1 expression and glycosaminoglycan accumulation that were repressed by IL-1β, and reduced the effect of IL-1β on ADAMTS-5, and MMP3. Screening analysis based on micro-RNA sequencing and Venny analysis identified the downstream micro-RNAs, including miR-940 and miR-576-5p. Then, the miR-940-mimic or miR-576-5p-mimic were transfected into CEPCs. Compared with the SAA group, the expression of ADAMTS-5 and MMP3 increased significantly and the expression of COL2A1 obviously decreased after overexpression of miR-940 or miR-576-5p in CEPCs.
CONCLUSION
Salvianolic acid A attenuated the IL-1β-induced extracellular matrix degradation of cartilage endplate cells by targeting regulate the miR-940 and the miR-576-5p.
Humans
;
Apoptosis
;
Cartilage/metabolism*
;
Chondrocytes/metabolism*
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 3/metabolism*
;
MicroRNAs/metabolism*
10.Preliminary study of TRPV4 affects chondrocyte degeneration.
Xue SHEN ; Hu ZHANG ; De-Ta CHEN ; Yue-Long CAO
China Journal of Orthopaedics and Traumatology 2023;36(10):990-995
OBJECTIVE:
To explore and verify that transient receptor potential vanilloid 4(TRPV4) affects chondrocyte degeneration.
METHODS:
Neonatal SD rats were selected, primary chondrocytes were extracted, and identified by toluidine blue staining and alcian blue staining;an in vitro chondrocyte inflammation model was constructed by IL-1β, and TRPV4 inhibitor was used to treat chondrocytes under inflammatory conditions, and the chondrocytes were treated by RT-PCR method was used to detect matrix metallopeptidase 13(MMP-13), a disintegrin and metalloproteinase with thrombospondin 5, (ADAMTS-5)、nitric oxide synthase 2(NOS2)、Collagen, type II alpha 1(Col2α1)and aggrecan (Acan) mRNA in chondrocytes; primary chondrocytes were treated with different concentrations of TRPV4 overexpression plasmid, and the optimal overexpression dose was screened. The mRNA expressions of TRPV4, MMP-13, ADAMTS-5, NOS2, Col2α1 and Acan in chondrocytes under the optimal TRPV4 overexpression dose were detected.
RESULTS:
Toluidine blue staining and Alcian blue staining identified the extracted cells as primary chondrocytes;RT-PCR showed that TRPV4, MMP-13, ADAMTS-5, NOS2 mRNA in chondrocytes treated with TRPV4 inhibitor under inflammatory conditions. The expression of Col2α1 mRNA was significantly decreased (P<0.05), and the expression of Col2α1 mRNA was increased (P<0.05). Although there was no significant difference in the expression of Acan mRNA, the overall trend was also increasing. The expression of Col2α1 and Acan mRNA in chondrocytes was significantly decreased (P<0.05), and the expression of NOS2 mRNA was increased(P<0.05), but there was no significant difference in MMP-13 and ADAMTS-5 (P>0.05).
CONCLUSION
Inhibiting the expression of TRPV4 can down-regulate the expression of genes related to chondrocyte degeneration.
Animals
;
Rats
;
Aggrecans/metabolism*
;
Cartilage, Articular
;
Cells, Cultured
;
Chondrocytes
;
Interleukin-1beta/metabolism*
;
Matrix Metalloproteinase 13/metabolism*
;
Rats, Sprague-Dawley
;
RNA, Messenger/metabolism*
;
TRPV Cation Channels/metabolism*

Result Analysis
Print
Save
E-mail