1.Nilotinib-loaded gelatin methacryloyl microneedles patch for the treatment of cardiac dysfunction after myocardial infarction.
Journal of Biomedical Engineering 2023;40(5):996-1004
The study aimed to evaluate the therapeutic effect of nilotinib-loaded biocompatible gelatin methacryloyl (GelMA) microneedles patch on cardiac dysfunction after myocardial infarction(MI), and provide a new clinical perspective of myocardial fibrosis therapies. The GelMA microneedles patches were attached to the epicardial surface of the infarct and peri-infarct zone in order to deliver the anti-fibrosis drug nilotinib on the 10th day after MI, when the scar had matured. Cardiac function and left ventricular remodeling were assessed by such as echocardiography, BNP (brain natriuretic peptide) and the heart weight/body weight ratio (HW/BW). Myocardial hypertrophy and fibrosis were examined by WGA (wheat germ agglutinin) staining, HE (hematoxylin-eosin staining) staining and Sirius Red staining. The results showed that the nilotinib-loaded microneedles patch could effectively attenuate fibrosis expansion in the peri-infarct zone and myocardial hypertrophy, prevent adverse ventricular remodeling and finally improve cardiac function. This treatment strategy is a beneficial attempt to correct the cardiac dysfunction after myocardial infarction, which is expected to become a new strategy to correct the cardiac dysfunction after MI. This is of great clinical significance for improving the long-term prognosis of MI patients.
Humans
;
Myocardial Infarction/drug therapy*
;
Cardiomegaly
;
Natriuretic Peptide, Brain/therapeutic use*
;
Fibrosis
;
Myocardium/pathology*
2.Effect and mechanism of leonurine on pressure overload-induced cardiac hypertrophy in rats.
Xiao-Li DING ; Qing-Qing YUAN ; Ding-Jia XUE ; Fu-Ming YANG ; Yi-Zhun ZHU ; Hai-Bing QIAN
China Journal of Chinese Materia Medica 2022;47(2):461-468
To investigate the effects of leonurine(Leo) on abdominal aortic constriction(AAC)-induced cardiac hypertrophy in rats and its mechanism. A rat model of pressure overload-induced cardiac hypertrophy was established by AAC method. After 27-d intervention with high-dose(30 mg·kg~(-1)) and low-dose(15 mg·kg~(-1)) Leo or positive control drug losartan(5 mg·kg~(-1)), the cardiac function was evaluated by hemodynamic method, followed by the recording of left ventricular systolic pressure(LVSP), left ventricular end-diastolic pressure(LVESP), as well as the maximum rate of increase and decrease in left ventricular pressure(±dp/dt_(max)). The degree of left ventricular hypertrophy was assessed based on heart weight index(HWI) and left ventricular mass index(LVWI). Myocardial tissue changes and the myocardial cell diameter(MD) were measured after hematoxylin-eosin(HE) staining. The contents of angiotensin Ⅱ(AngⅡ) and angiotensin Ⅱ type 1 receptor(AT1 R) in myocardial tissue were detected by ELISA. The level of Ca~(2+) in myocardial tissue was determined by colorimetry. The protein expression levels of phospholipase C(PLC), inositol triphosphate(IP3), AngⅡ, and AT1 R were assayed by Western blot. Real-time quantitative PCR(qRT-PCR) was employed to determine the mRNA expression levels of β-myosin heavy chain(β-MHC), atrial natriuretic factor(ANF), AngⅡ, and AT1 R. Compared with the model group, Leo decreased the LVSP, LVEDP, HWI, LVWI and MD values, but increased ±dp/dt_(max) of the left ventricle. Meanwhile, it improved the pathological morphology of myocardial tissue, reduced cardiac hypertrophy, edema, and inflammatory cell infiltration, decreased the protein expression levels of PLC, IP3, AngⅡ, AT1 R, as well as the mRNA expression levels of β-MHC, ANF, AngⅡ, AT1 R, c-fos, and c-Myc in myocardial tissue. Leo inhibited AAC-induced cardiac hypertrophy possibly by influencing the RAS system.
Angiotensin II/metabolism*
;
Animals
;
Cardiomegaly/genetics*
;
Gallic Acid/analogs & derivatives*
;
Hypertrophy, Left Ventricular/pathology*
;
Myocardium/pathology*
;
Rats
3.Myocardial biopsy of Liwen procedure: representability and etiological diagnostic value of cardiac samples obtained by a novel technique in patients with hypertrophic cardiomyopathy.
Chao HAN ; Meng Yao ZHOU ; Jian Feng WU ; Bo WANG ; Heng MA ; Rui HU ; Lei ZUO ; Jing LI ; Xiao Juan LI ; Sheng Jun TA ; Lin Ni FAN ; Li Wen LIU
Chinese Journal of Cardiology 2022;50(4):361-368
Objective: To investigate the representability and etiological diagnostic value of myocardium samples obtained from patients with hypertrophic cardiomyopathy (HCM) by transthoracic echocardiography-guided percutaneous intramyocardial septal biopsy (myocardial biopsy of Liwen procedure). Methods: This study was a retrospective case-series analysis. Patients with HCM, who underwent myocardial biopsy of Liwen procedure and radiofrequency ablation in Xijing Hospital, Air Force Military Medical University from July to December 2019, were included. Demographic data (age, sex), echocardiographic data and complications were collected through electronic medical record system. The histological and echocardiographic features, pathological characteristics of the biopsied myocardium of the patients were analyzed. Results: A total of 21 patients (aged (51.2±14.5) years and 13 males (61.9%)) were enrolled. The thickness of ventricular septum was (23.3±4.5)mm and the left ventricular outflow tract gradient was (78.8±42.6)mmHg (1 mmHg=0.133 kPa). Eight patients (38.1%) were complicated with hypertension, 1 patient (4.8%) had diabetes, and 2 patients (9.5%) had atrial fibrillation. Hematoxylin-eosin staining of myocardial samples of HCM patients before radiofrequency ablation evidenced myocytes hypertrophy, myocytes disarray, nuclear hyperchromatism, hypertrophy, atypia, coronary microvessel abnormalities, adipocyte infiltration, inflammatory cell infiltration, cytoplasmic vacuoles, lipofuscin deposition. Interstitial fibrosis and replacement fibrosis were detected in Masson stained biopsy samples. Hematoxylin-eosin staining of myocardial samples of HCM patients after radiofrequency ablation showed significantly reduced myocytes, cracked nuclear in myocytes, coagulative necrosis, border disappearance and nuclear fragmentation. Quantitative analysis of myocardial specimens of HCM patients before radiofrequency ablation showed that there were 9 cases (42.9%) with mild myocardial hypertrophy and 12 cases (57.1%) with severe myocardial hypertrophy. Mild, moderate and severe fibrosis were 5 (23.8%), 9 (42.9%) and 7 (33.3%), respectively. Six cases (28.6%) had myocytes disarray. There were 11 cases (52.4%) of coronary microvessel abnormalities, 4 cases (19.0%) of adipocyte infiltration, 2 cases (9.5%) of inflammatory cell infiltration,6 cases (28.5%) of cytoplasmic vacuole, 16 cases (76.2%) of lipofuscin deposition. The diameter of cardiac myocytes was (25.2±2.8)μm, and the percentage of collagen fiber area was 5.2%(3.0%, 14.6%). One patient had severe replacement fibrosis in the myocardium, with a fibrotic area of 67.0%. The rest of the patients had interstitial fibrosis. The myocardial specimens of 13 patients were examined by transmission electron microscopy. All showed increased myofibrils, and 9 cases had disorder of myofibrils. All patients had irregular shape of myocardial nucleus, partial depression, mild mitochondrial swelling, fracture and reduction of mitochondrial crest, and local aggregation of myofibrillary interfascicles. One patient had hypertrophy of cardiomyocytes, but the arrangement of muscle fibers was roughly normal. There were vacuoles in the cytoplasm, and Periodic acid-Schiff staining was positive. Transmission electron microscopy showed large range of glycogen deposition in the cytoplasm, with occasional double membrane surround, which was highly indicative of glycogen storage disease. No deposition of glycolipid substance in lysozyme was observed under transmission electron microscope in all myocardial specimens, which could basically eliminate Fabry disease. No apple green substance was found under polarized light after Congo red staining, which could basically exclude cardiac amyloidosis. Conclusion: Myocardium biopsied samples obtained by Liwen procedure of HCM patients are representative and helpful for the etiological diagnosis of HCM.
Biopsy/adverse effects*
;
Cardiomegaly/pathology*
;
Cardiomyopathy, Hypertrophic/diagnosis*
;
Eosine Yellowish-(YS)
;
Fibrosis
;
Heart Defects, Congenital
;
Hematoxylin
;
Humans
;
Lipofuscin
;
Male
;
Myocardium/pathology*
;
Retrospective Studies
4.Overexpression of miR-130a-3p attenuates cardiomyocyte hypertrophy.
Xiaojiao WANG ; Jing QU ; Dongxu LI ; Junli LI ; Wenchao WU ; Xiaojing LIU
Journal of Biomedical Engineering 2020;37(2):340-348
This study aimed to explore the role of miR-130a-3p in cardiomyocyte hypertrophy and its underlying mechanisms. Pressure-overload induced myocardial hypertrophy mice model was constructed by thoracic aortic constriction (TAC). , norepinephrine (NE) was used to stimulate neonatal rat cardiomyocytes (NRCMs) and H9c2 rat cardiomyocytes to induce hypertrophic phenotypes. The expression of miR-130a-3p was detected in mice hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. The mimics and inhibitors of miR-130a-3p were transfected into H9c2 cells to observe the role of miR-130a-3p on the hypertrophic phenotype change of cardiomyocytes separately. Furthermore, whether miR-130a-3p regulated hypertrophic related signaling pathways was explored. The results showed that the expression of miR-130a-3p was significantly decreased in hypertrophic myocardium, hypertrophic NRCMs and H9c2 cells. After transfection of miR-130a-3p mimics, the expression of hypertrophic marker genes, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and β-myosin heavy chain (β-MHC), and the cell surface area were notably down-regulated compared with the control group (mimics N.C. + NE group). But after transfection of miR-130a-3p inhibitor, the expression of ANP, BNP and β-MHC in H9c2 cells increased significantly, and the cell area increased further. By Western blot, it was found that the protein phosphorylation level of Akt and mTOR were down-regulated after over-expression of miR-130a-3p. These results suggest that miR-130a-3p mimics may alleviate the degree of cardiomyocyte hypertrophy, meanwhile its inhibitor can further aggravate cardiomyocyte hypertrophy. Over-expression of miR-130a-3p may attenuate cardiomyocytes hypertrophy by affecting the Akt pathway.
Animals
;
Atrial Natriuretic Factor
;
Cardiomegaly
;
Mice
;
MicroRNAs
;
genetics
;
Myocardium
;
pathology
;
Myocytes, Cardiac
;
pathology
;
Myosin Heavy Chains
;
Natriuretic Peptide, Brain
;
Nonmuscle Myosin Type IIB
;
Proto-Oncogene Proteins c-akt
;
Rats
5.Research progress on miR-21 in heart diseases.
Journal of Zhejiang University. Medical sciences 2019;48(2):214-218
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Cardiomegaly
;
genetics
;
physiopathology
;
Heart Diseases
;
genetics
;
physiopathology
;
Humans
;
MicroRNAs
;
genetics
;
metabolism
;
Myocardium
;
pathology
6.Cardiac Hypertrophy is Positively Regulated by MicroRNA‑24 in Rats
Juan GAO ; Min ZHU ; Rui-Feng LIU ; Jian-Shu ZHANG ; Ming XU
Chinese Medical Journal 2018;131(11):1333-1341
BackgroundMicroRNA-24 (miR-24) plays an important role in heart failure by reducing the efficiency of myocardial excitation-contraction coupling. Prolonged cardiac hypertrophy may lead to heart failure, but little is known about the role of miR-24 in cardiac hypertrophy. This study aimed to preliminarily investigate the function of miR-24 and its mechanisms in cardiac hypertrophy.
MethodsTwelve Sprague-Dawley rats with a body weight of 50 ± 5 g were recruited and randomly divided into two groups: a transverse aortic constriction (TAC) group and a sham surgery group. Hypertrophy index was measured and calculated by echocardiography and hematoxylin and eosin staining. TargetScans algorithm-based prediction was used to search for the targets of miR-24, which was subsequently confirmed by a real-time polymerase chain reaction and luciferase assay. Immunofluorescence labeling was used to measure the cell surface area, and H-leucine incorporation was used to detect the synthesis of total protein in neonatal rat cardiac myocytes (NRCMs) with the overexpression of miR-24. In addition, flow cytometry was performed to observe the alteration in the cell cycle. Statistical analysis was carried out with GraphPad Prism v5.0 and SPSS 19.0. A two-sided P < 0.05 was considered as the threshold for significance.
ResultsThe expression of miR-24 was abnormally increased in TAC rat cardiac tissue (t = -2.938, P < 0.05). TargetScans algorithm-based prediction demonstrated that CDKN1B (p27, Kip1), a cell cycle regulator, was a putative target of miR-24, and was confirmed by luciferase assay. The expression of p27 was decreased in TAC rat cardiac tissue (t = 2.896, P < 0.05). The overexpression of miR-24 in NRCMs led to the decreased expression of p27 (t = 4.400, P < 0.01), and decreased G0/G1 arrest in cell cycle and cardiomyocyte hypertrophy.
ConclusionMiR-24 promotes cardiac hypertrophy partly by affecting the cell cycle through down-regulation of p27 expression.
Animals ; Cardiomegaly ; genetics ; pathology ; Cell Cycle ; genetics ; physiology ; Cyclin-Dependent Kinase Inhibitor p27 ; genetics ; metabolism ; Male ; MicroRNAs ; genetics ; Myocardium ; metabolism ; Myocytes, Cardiac ; cytology ; metabolism ; Rats ; Rats, Sprague-Dawley
7.Protective effect of Dendrobium candidum on isoproterenol induced cardiac hypertrophy in rats.
Xiao-Chun XIAO ; Wei-Hong CHEN ; Yuan-Yuan CAO ; Yong-Jun LOU ; Yuan LIU ; Jin WANG ; Xu-Feng ZHAI ; Nian-Sheng LI ; Ying LI
China Journal of Chinese Materia Medica 2018;43(4):800-804
To study the effect and mechanism of Dendrobium candidum on isoproterenol-induced myocardial hypertrophy in rats, 60 healthy SD rats(30 males and 30 females) were randomly divided into 5 groups(12 in each group): normal group, model group, three D. candidum preventive administration groups(0.09, 0.18, 1.1 g·kg⁻¹). Except for the normal group, rats of other groups were injected back subcutaneously with ISO(5 mg·kg⁻¹) for 10 consecutive days. At the same time, preventive administration groups began to give different doses of the sample for 30 days and model group began to give normal saline. Left ventricular systolic pressure(LVSP) was measured in each group by common carotid artery cannulation, and the left ventricle(LW)/tibia length, heart weight index(HWI) and myocardial hydroxyproline(Hydro) content were calculated. Myocardial tissue HE staining and Masson staining were used to observe the myocardial structure and the degree of myocardial fibrosis respectively. Atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), and cardiac troponin I(cTN-I) concentration were measured by enzyme-linked immunosorbent assay(ELISA). The results showed that as compared with the normal group, the levels of ANP, BNP and cTN-I in plasma were significantly increased in ISO-induced hypertrophic rats; as compared with the model group, D. candidumcan inhibit ISO-induced ventricular pressure and ventricular hypertrophy, reduce myocardial collagen synthesis, improve myocardial fibrosis and ventricular remodeling, and significantly down-regulate ANP, BNP and cTN-I levels in plasma. This study shows that D. candidum has a protective effect on isoproterenol-induced cardiac hypertrophy.
Animals
;
Cardiomegaly
;
drug therapy
;
Dendrobium
;
chemistry
;
Drugs, Chinese Herbal
;
pharmacology
;
Female
;
Isoproterenol
;
Male
;
Myocardium
;
pathology
;
Rats
;
Rats, Sprague-Dawley
8.Surgical Planning by 3D Printing for Primary Cardiac Schwannoma Resection.
Kuk Hui SON ; Kun Woo KIM ; Chi Bum AHN ; Chang Hu CHOI ; Kook Yang PARK ; Chul Hyun PARK ; Jae Ik LEE ; Yang Bin JEON
Yonsei Medical Journal 2015;56(6):1735-1737
We report herein a case of benign cardiac schwannoma in the interatrial septum. A 42-year-old woman was transferred from a clinic because of cardiomegaly as determined by chest X-ray. A transthoracic echocardiography and chest computed tomography examination revealed a huge mass in the pericardium compressing the right atrium, superior vena cava (SVC), left atrium, and superior pulmonary vein. To confirm that the tumor originated from either heart or mediastinum, cine magnetic resonance imaging was performed, but the result was not conclusive. To facilitate surgical planning, we used 3D printing. Using a printed heart model, we decided that tumor resection under cardiopulmonary bypass (CPB) through sternotomy would be technically feasible. At surgery, a huge tumor in the interatrial septum was confirmed. By incision on the atrial roof between the aorta and SVC, tumor enucleation was performed successfully under CPB. Pathology revealed benign schwannoma. The patient was discharged without complication. 3D printing of the heart and tumor was found to be helpful when deciding optimal surgical approach.
Adult
;
Atrial Septum/pathology/surgery
;
Cardiomegaly/*etiology/radiography
;
*Cardiopulmonary Bypass
;
Female
;
Heart Atria/pathology
;
Heart Neoplasms/pathology/*surgery
;
Humans
;
Magnetic Resonance Imaging, Cine
;
Neurilemmoma/*pathology/surgery
;
*Printing, Three-Dimensional
;
Sternotomy
;
Treatment Outcome
;
Vena Cava, Superior/pathology
9.Preliminary Study of Necroptosis in Cardiac Hypertrophy Induced by Pressure Overload.
Mingyue ZHAO ; Yupei QIN ; Lihui LU ; Xiaoju TANG ; Wenchao WU ; Hua FU ; Xiaojing LIU
Journal of Biomedical Engineering 2015;32(3):618-623
The aim of this study was to observe whether necroptosis is involved in the process of cardiac hypertrophy induced by pressure overload. SD rats underwent transverse abdominal aortic constriction (TAC) operation for establishing cardiac hypertrophy model. The structure and function of the left ventricle of rats were evaluated via echocardiography, left ventricular mass index, the expression of markers of cardiac hypertrophy and histological detection. Real-time PCR and Western blot were used to measure the gene and protein expression of receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3, the necroptosis markers) respectively. Four weeks after TAC operation, rat model for cardiac hypertrophy was established. The experimental data showed that the gene and protein expressions of RIPK1 and RIPK3 in the rat heart hypertrophic tissues after TAC for 4 weeks were increased significantly compared with those in the sham group. HE staining showed cardiomyocytes injury and hypertrophy in the hearts of TAC rat models. By transmission electron microscope, we observed that mitochondria of cardiomyocytes were damaged seriously in the TAC models. Treatment with losartan used, the selective antagonist of angiotensin II type I receptor could improve the cardiac function of TAC rats. Moreover, losartan treatment decreased the expression of RIPK1 and RIPK3 in heart tissues of TAC rats. The results suggest that necroptosis occurrs in the process of cardiac hypertrophy with pressure overload, and losartan could alleviate the cardiac hypertrophy and inhibit necroptosis.
Animals
;
Apoptosis
;
Cardiomegaly
;
pathology
;
Disease Models, Animal
;
Echocardiography
;
Heart
;
physiopathology
;
Losartan
;
pharmacology
;
Myocytes, Cardiac
;
Pressure
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Real-Time Polymerase Chain Reaction
;
Receptor-Interacting Protein Serine-Threonine Kinases
;
metabolism
10.Effect of Atorvastatin on Expression of Peroxisome Proliferator-activated Receptor Beta/delta in Angiotensin II-induced Hypertrophic Myocardial Cells In Vitro.
Li SHENG ; Xu YANG ; Ping YE ; Yong-xue LIU ; Chun-guang HAN
Chinese Medical Sciences Journal 2015;30(4):245-251
OBJECTIVETo explore the effect of atorvastatin on cardiac hypertrophy and to determine the potential mechanism involved.
METHODSAn in vitro cardiomyocyte hypertrophy from neonatal rats was induced with angiotensin II (Ang II) stimulation. Before Ang II stimulation, the cultured rat cardiac myocytes were pretreated with atorvastatin at different concentrations (0.1, 1, and 10 μmol/L). The following parameters were evaluated: the myocyte surface area, 3H-leucine incorporation into myocytes, mRNA expressions of atrial natriuretic peptide, brain natriuretic peptide, matrix metalloproteinase 9, matrix metalloproteinase 2, and interleukin-1β, mRNA and protein expressions of the δ/β peroxisome proliferator-activated receptor (PPAR) subtypes.
RESULTSIt was shown that atorvastatin could ameliorate Ang II-induced neonatal cardiomyocyte hypertrophy in the area of cardiomyocytes, 3H-leucine incorporation, and the expression of atrial natriuretic peptide and brain natriuretic peptide markedly. Meanwhile, atorvastatin also inhibited the augmented mRNA level of several cytokines in hypertrophic myocytes. Furthermore, the down-regulated expression of PPAR- δ/β at both the mRNA and protein levels in hypertrophic myocytes could be significantly reversed by atorvastatin treatment.
CONCLUSIONSAtorvastatin could improve Ang II-induced cardiac hypertrophy and inhibit the expression of cytokines. Such effect might be partly achieved through activation of the PPAR-δ/β pathway.
Angiotensin II ; pharmacology ; Animals ; Atorvastatin Calcium ; pharmacology ; therapeutic use ; Cardiomegaly ; metabolism ; pathology ; prevention & control ; Cells, Cultured ; Hydroxymethylglutaryl-CoA Reductase Inhibitors ; pharmacology ; PPAR delta ; genetics ; PPAR-beta ; genetics ; Rats ; Rats, Wistar

Result Analysis
Print
Save
E-mail