1.Effects of iron accumulation on dental caries, gingivitis, and candida albicans infection in children with beta thalassemia major: A narrative review
Prawati Nuraini ; Soegeng Wahluyo ; Seno Pradopo ; Satiti Kuntari ; Ali Taqwim ; Yesri Sasmita Purba ; Marsha Anindya Abigail Pantouw
Acta Medica Philippina 2023;57(3):50-55
Background:
Thalassemia is a common inherited hemolytic disorder characterized by the absence or reduction of one of the globin chains. Beta thalassemia major generally has oral cavity manifestations. Patients with beta thalassemia major often require routine blood transfusion. However, this treatment has the side effect of accumulating iron in the salivary glands, which increase the risk of dental caries, gingivitis, and secondary infection from Candida albicans.
Objective:
The aim of this review is to explain the relationship of salivary iron levels and the effects of iron accumulation on dental caries, gingivitis, and Candida albicans infection.
Methods:
A comprehensive search was performed on PubMed, Scopus, and Google Scholar databases using the keywords beta thalassemia major, iron, dental caries, gingivitis, Candida albicans.
Results:
Iron is an essential micronutrient needed by Candida albicans for its growth and virulence. Blood transfusion in patients with beta thalassemia major can lead to a buildup of iron in the salivary glands and trigger the formation of non-transferrin bound iron (NTBI). NTBI can circulate in plasma and form a reactive oxygen species (ROS) that stimulate the formation of biofilms and increase dental caries. ROS may affect several genes associated with the inflammatory process and increase the incidence of gingivitis. It can also reduce salivary secretion in patients with thalassemia-β major that cause dysbiosis, which triggers an overgrowth of Candida albicans.
Conclusion
The excess iron in patients with beta thalassemia major increase the risk of dental caries, gingivitis, and Candida albicans infection.
beta thalassemia major
;
iron
;
dental caries
;
gingivitis
;
Candida albicans
2.A case of green nail syndrome secondary to P. aeruginosa and C. parapsilosis treated with topical nadifloxacin and oral fluconazole in a 31-year-old Filipino female
Angeli Elaine A. Pangilinan, MD ; Nicole R. Rivera, MD ; Leilani R. Senador, MD, FPDS
Journal of the Philippine Dermatological Society 2023;32(1):27-30
Introduction:
Pseudomonas aeruginosa is an opportunistic, gram-negative bacillus that can contaminate skin or open wounds to
cause skin infections that are historically difficult to manage. The pathogenesis of green nail syndrome (GNS) begins with hyperhydration (occlusion, sweating, maceration) or destruction (microtrauma, dermatitis) of the epidermis thus disrupting the physical barrier,
leading to the colonization and proliferation of P. aeruginosa. This case explores the off-label use of nadifloxacin, a fluoroquinolone approved for acne and bacterial skin infections in some countries, to treat a case of GNS.
Case Report:
This is a case of a 31-year-old Filipino female who presented with a four-month history of green discoloration of the lateral
portion of the right thumbnail with a medical history of antiphospholipid antibody syndrome and rheumatoid arthritis. Clinical examination showed a dystrophic thumbnail with greenish discoloration, erythema and swelling around the base of the cuticle, and distal
onycholysis. Laboratory findings revealed co-infection of P. aeruginosa and Candida parapsilosis. The patient was effectively treated with
topical nadifloxacin and oral fluconazole.
Conclusion
This case highlights the possibility of fungal and polymicrobial infections in GNS and suggests a novel, easy-to-use, and
cost-effective alternative treatment to GNS secondary to P. aeruginosa in the form of topical nadifloxacin.
Candida parapsilosis
;
Pseudomonas aeruginosa
;
Onychomycosis
4.Antifungal susceptibility of clinically isolated invasive Candida tropicalis in East China from 2017 to 2021.
Fei Fei WAN ; Min ZHANG ; Jian GUO ; Wen Juan WU
Chinese Journal of Preventive Medicine 2023;57(10):1542-1549
Objective: To explore the epidemiological characteristics of sample distribution and antifungal susceptibilities of clinically invasive C. tropicalis isolates from 2017 to 2021 in East China. Methods: Using a retrospective analysis, the East China Invasive Fungal Infection Group (ECIFIG) collected C. tropicalis clinically isolated from 32 hospitals in East China between January 2017 and December 2021. The identification results of the strains were reviewed using mass spectrometry by the central laboratory of the Shanghai East Hospital. The minimum inhibitory concentrations (MICs) of the strains against fluconazole (FLU), voriconazole (VOR), itraconazole (ITR), Posaconazole (POS), isavuconazole (ISA), anidulafungin (ANI), caspofungin (CAS), micafungin (MICA) and 5-fluorocytosine (FCT) were tested by the ThermoFisher CMC1JHY colorimetric microdilution method. The MIC of amphotericin B (AMB) was tested by the broth microdilution method. The MIC results were analyzed based on the clinical breakpoints and epidemiological cutoff values (ECV) published by the Clinical and Laboratory Standards Institute (CLSI) M27 Ed3 and M57 Ed4 documents. Data analysis was conducted using the Kruskal-Wallis test and paired t-test. Results: In total, 305 C. tropicalis isolates were collected. There were 38.0% (116/305) strains isolated from blood, 11.5% (35/305) ascites, 8.9% (27/305) catheter and 8.9% (27/305) drainage fluid. The resistance rate of C. tropicalis to FLU was 32.5%, to VOR was 28.5%, and the cross-resistance rate to FLU and VOR was 28.5%. The wild-type proportions for ITR and POS were 79.3% and 29.2% respectively. There was no significant difference in resistance rates, MIC50, and MIC90 of FLU and VOR, or in the wild-type rates of ITR and POS over five years. More than 95.0% of the isolates were susceptible to echinocandins. However, one strain was identified as being multi-drug resistant. In azole antifungals, voriconazole, itraconazole, posaconazole, and isavuconazole have similar GM MIC values. The GM MIC of fluconazole is significantly higher than that of itraconazole (t=9.95, P<0.05), posaconazole (t=9.99, P<0.05), and voriconazole (t=10.01, P<0.05), Meanwhile, among echinocandins, the GM MIC of ANI was comparable to that of CAS (t=1.17, P>0.05), both of which were significantly higher than MICA (t=11.56, P<0.05; t=4.15, P<0.05). Conclusion: The clinical isolates of C. tropicalis in East China from 2017 to 2021 were relatively susceptible to echinocandins. However, there was consistently high resistance to fluconazole and voriconazole. More intensive efforts should be made on the monitoring of drug resistance in C. tropicalis.
Humans
;
Antifungal Agents/pharmacology*
;
Fluconazole/pharmacology*
;
Candida tropicalis
;
Voriconazole/pharmacology*
;
Itraconazole/pharmacology*
;
Retrospective Studies
;
Candida
;
China/epidemiology*
;
Echinocandins/pharmacology*
;
Microbial Sensitivity Tests
5.Artemisinins inhibit oral candidiasis caused by Candida albicans through the repression on its hyphal development.
Xiaoyue LIANG ; Ding CHEN ; Jiannan WANG ; Binyou LIAO ; Jiawei SHEN ; Xingchen YE ; Zheng WANG ; Chengguang ZHU ; Lichen GOU ; Xinxuan ZHOU ; Lei CHENG ; Biao REN ; Xuedong ZHOU
International Journal of Oral Science 2023;15(1):40-40
Candida albicans is the most abundant fungal species in oral cavity. As a smart opportunistic pathogen, it increases the virulence by switching its forms from yeasts to hyphae and becomes the major pathogenic agent for oral candidiasis. However, the overuse of current clinical antifungals and lack of new types of drugs highlight the challenges in the antifungal treatments because of the drug resistance and side effects. Anti-virulence strategy is proved as a practical way to develop new types of anti-infective drugs. Here, seven artemisinins, including artemisinin, dihydroartemisinin, artemisinic acid, dihydroartemisinic acid, artesunate, artemether and arteether, were employed to target at the hyphal development, the most important virulence factor of C. albicans. Artemisinins failed to affect the growth, but significantly inhibited the hyphal development of C. albicans, including the clinical azole resistant isolates, and reduced their damage to oral epithelial cells, while arteether showed the strongest activities. The transcriptome suggested that arteether could affect the energy metabolism of C. albicans. Seven artemisinins were then proved to significantly inhibit the productions of ATP and cAMP, while reduced the hyphal inhibition on RAS1 overexpression strain indicating that artemisinins regulated the Ras1-cAMP-Efg1 pathway to inhibit the hyphal development. Importantly, arteether significantly inhibited the fungal burden and infections with no systemic toxicity in the murine oropharyngeal candidiasis models in vivo caused by both fluconazole sensitive and resistant strains. Our results for the first time indicated that artemisinins can be potential antifungal compounds against C. albicans infections by targeting at its hyphal development.
Animals
;
Mice
;
Candida albicans
;
Candidiasis, Oral/drug therapy*
;
Antifungal Agents/pharmacology*
;
Hyphae
;
Artemisinins/pharmacology*
6.Causative Microorganisms Isolated from Patients with Intra-Abdominal Infections and Their Drug Resistance Profiles: An 11-Year (2011-2021) Single-Center Retrospective Study.
Rui DING ; Rui Rui MA ; Ya Li LIU ; Ying ZHAO ; Li Na GUO ; Hong Tao DOU ; Hong Li SUN ; Wen Jing LIU ; Li ZHANG ; Yao WANG ; Ding Ding LI ; Qiao Lian YI ; Ying Chun XU
Biomedical and Environmental Sciences 2023;36(8):732-742
OBJECTIVE:
To investigate the distribution and antimicrobial susceptibility of causative microorganisms recovered from patients with intra-abdominal infections (IAIs).
METHODS:
A total of 2,926 bacterial and fungal strains were identified in samples collected from 1,679 patients with IAIs at the Peking Union Medical College Hospital between 2011 and 2021. Pathogenic bacteria and fungi were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing (AST) was performed using the VITEK 2 compact system and the Kirby-Bauer method. AST results were interpreted based on the M100-Ed31 clinical breakpoints of the Clinical and Laboratory Standards Institute.
RESULTS:
Of the 2,926 strains identified, 49.2%, 40.8%, and 9.5% were gram-negative bacteria, gram-positive bacteria, and fungi, respectively. Escherichia coli was the most prevalent pathogen in intensive care unit (ICU) and non-ICU patients; however, a significant decrease was observed in the isolation of E. coli between 2011 and 2021. Specifically, significant decreases were observed between 2011 and 2021 in the levels of extended-spectrum β-lactamase (ESBL)-producing E. coli (from 76.9% to 14.3%) and Klebsiella pneumoniae (from 45.8% to 4.8%). Polymicrobial infections, particularly those involving co-infection with gram-positive and gram-negative bacteria, were commonly observed in IAI patients. Moreover, Candida albicans was more commonly isolated from hospital-associated IAI samples, while Staphylococcus epidermidis had a higher ratio in community-associated IAIs. Additionally, AST results revealed that most antimicrobial agents performed better in non-ESBL-producers than in ESBL-producers, while the overall resistance rates (56.9%-76.8%) of Acinetobacter baumanmii were higher against all antimicrobial agents than those of other common gram-negative bacteria. Indeed, Enterococcus faecium, Enterococcus faecalis, S. epidermidis, and S. aureus were consistently found to be susceptible to vancomycin, teicoplanin, and linezolid. Similarly, C. albicans exhibited high susceptibility to all the tested antifungal drugs.
CONCLUSION
The distribution and antimicrobial susceptibility of the causative microorganisms from patients with IAIs were altered between 2011 and 2021. This finding is valuable for the implementation of evidence-based antimicrobial therapy and provides guidance for the control of hospital infections.
Humans
;
Anti-Bacterial Agents
;
Escherichia coli
;
Gram-Negative Bacteria
;
Gram-Positive Bacteria
;
Retrospective Studies
;
Staphylococcus aureus
;
Intraabdominal Infections/epidemiology*
;
Candida albicans
;
Coinfection
7.Correlation of extracellular enzymes activity of Candida glabrata clinical isolates with in vivo pathogenicity in Galleria mellonella larvae.
Peng CHENG ; Xiang Ren A ; Xiang Ming MU ; Bo Jie YANG ; Si Si CHAN
Chinese Journal of Preventive Medicine 2023;57(2):229-235
Objective: To explore the relationship between extracellular enzymes activity and virulence of Candida glabrata clinical isolates based on the infection model of Galleria mellonella larvae. Methods: Using experimental research methods, 71 strains of non-repetitive Candida glabrata were collected from Qinghai Provincial People's Hospital from June 2021 to January 2022. Bovine serum protein agar medium, egg yolk agar medium, sheep blood agar medium, Tween-80 agar medium and triglyceride agar medium were used to detect the aspartyl protease activity, phospholipase activity, hemolysis activity, esterase activity and lipase activity of Candida glabrata. Median lethal concentration (LC50) was calculated by using 1.25×108 CFU/ml,2.50×108 CFU/ml,3.75×108 CFU/ml,5.00×108 CFU/ml suspension of Candida glabrata ATCC2001 to infect Galleria mellonella larvae. Histopathological and etiological analysis was performed to determine whether the infection model was successfully established. The clinical isolates of Candida glabrata were configured to infect Galleria mellonella larvae with LC50 concentration to detect the pathogenicity of Galleria mellonella larvae.Spearman test or Pearson test were used to analyze the correlation between the extracellular enzyme activity of Candida glabrata clinical isolates and the pathogenicity of Galleria mellonella larvae. Results: 71 strains of Candida glabrata isolated clinically were detected to have low hemolytic activity after 2 days of culture. Aspartyl protease was detected after 4 days of culture, among which 7 strains (9.86%), 19 strains (26.76%) and 45 strains (63.38%) showed low, medium and high aspartyl protease activity. After 7 days of culture, 71 strains did not detect phospholipase, esterase and lipase activities. Candida glabrata on Galleria mellonella larvae of LC50=2.5×108 CFU/ml Fungal spore were found in the intestinal tissue pathological section of Galleria mellonella larvae in the experimental group, and Candida glabrata was identified by the microbial Mass Spectrometry after culture, while no fungi were found in the pathological section and culture of the control group. Spearman test shows that, there was a linear positive correlation between aspartyl protease activity and the survival rate of Galleria mellonella larvae (r = 0.73, P<0.01), the difference was statistically significant.Pearson test shows that, there was no significant linear relationship between hemolytic activity and survival rate of Galleria mellonella larvae (r = 0.16, P = 0.34), the difference was not statistically significant. Conclusion: The clinical isolates of Candida glabrata in this study had aspartyl protease activity and low hemolytic activity, but no phospholipase, esterase and lipase activity. The activity of aspartyl aspartyl protease of Candida glabrata was positively correlated with the pathogenicity of Galleria mellonella larvae.
Animals
;
Sheep
;
Larva/microbiology*
;
Virulence
;
Candida glabrata
;
Agar
;
Moths/microbiology*
;
Esterases
;
Aspartic Acid Proteases
;
Lipase
8.Identification of the target site of antimicrobial peptide AMP-17 against Candida albicans.
Longbing YANG ; Zhuqing TIAN ; Luoxiong ZHOU ; Chaoqin SUN ; Mingjiao HUANG ; Chunren TIAN ; Jian PENG ; Guo GUO
Chinese Journal of Biotechnology 2023;39(1):304-317
Candida albicans is one of the major causes of invasive fungal infections and a serious opportunistic pathogen in immunocompromised individuals. The antimicrobial peptide AMP-17 has prominent anti-Candida activity, and proteomic analysis revealed significant differences in the expression of cell wall (XOG1) and oxidative stress (SRR1) genes upon the action of AMP-17 on C. albicans, suggesting that AMP-17 may exert anti-C. albicans effects by affecting the expression of XOG1 and SRR1 genes. To further investigate whether XOG1 and SRR1 genes were the targets of AMP-17, C. albicans xog1Δ/Δ and srr1Δ/Δ mutants were constructed using the clustered regulatory interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system. Phenotypic observations revealed that deletion of two genes had no significant effect on C. albicans growth and biofilm formation, whereas XOG1 gene deletion affected in vitro stress response and mycelium formation of C. albicans. Drug sensitivity assay showed that the MIC80 values of AMP-17 against xog1Δ/Δ and srr1Δ/Δ mutants increased from 8 μg/mL (for the wild type C. albicans SC5314) to 16 μg/mL, while the MIC80 values against srr1Δ/Δ: : srr1 revertants decreased to the level of the wild type SC5314. In addition, the ability of AMP-17 to inhibit biofilm formation of both deletion strains was significantly reduced compared to that of wild type SC5314, indicating that the susceptibility of the deletion mutants to AMP-17 was reduced in both the yeast state and during biofilm formation. These results suggest that XOG1 and SRR1 genes are likely two of the potential targets for AMP-17 to exert anti-C. albicans effects, which may facilitate further exploration of the antibacterial mechanism of novel peptide antifungal drugs.
Humans
;
Candida albicans
;
Antimicrobial Peptides
;
Proteomics
;
Peptides/pharmacology*
;
Transcription Factors/metabolism*
;
Antifungal Agents/pharmacology*
9.Mechanism of n-butanol alcohol extract of Baitouweng Decoction in treatment of vulvovaginal candidiasis based on negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis.
Kai-Fan HU ; Ling MO ; Hao ZHANG ; Dan XIA ; Gao-Xiang SHI ; Da-Qiang WU ; Tian-Ming WANG ; Jing SHAO ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2023;48(6):1578-1588
This study aimed to explore the mechanism of n-butanol alcohol extract of Baitouweng Decoction(BAEB) in the treatment of vulvovaginal candidiasis(VVC) in mice based on the negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis. In the experiment, female C57BL/6 mice were divided randomly into the following six groups: a blank control group, a VVC model group, high-, medium-, and low-dose BAEB groups(80, 40, and 20 mg·kg~(-1)), and a fluconazole group(20 mg·kg~(-1)). The VVC model was induced in mice except for those in the blank control group by the estrogen dependence method. After modeling, no treatment was carried out in the blank control group. The mice in the high-, medium-, and low-dose BAEB groups were treated with BAEB at 80, 40, and 20 mg·kg~(-1), respectively, and those in the fluconazole group were treated with fluconazole at 20 mg·kg~(-1). The mice in the VVC model group received the same volume of normal saline. The general state and body weight of mice in each group were observed every day, and the morphological changes of Candida albicans in the vaginal lavage of mice were examined by Gram staining. The fungal load in the vaginal lavage of mice was detected by microdilution assay. After the mice were killed, the degree of neutrophil infiltration in the vaginal lavage was detected by Papanicolaou staining. The content of inflammatory cytokines interleukin(IL)-1β, IL-18, and lactate dehydrogenase(LDH) in the vaginal lavage was tested by enzyme-linked immunosorbent assay(ELISA), and vaginal histopathology was analyzed by hematoxylin-eosin(HE) staining. The expression and distribution of NLRP3, PKCδ, pNLRC4, and IL-1Ra in vaginal tissues were measured by immunohistochemistry(IHC), and the expression and distribution of pNLRC4 and IL-1Ra in vaginal tissues were detected by immunofluorescence(IF). The protein expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by Western blot(WB), and the mRNA expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by qRT-PCR. The results showed that compared with the blank control group, the VVC model group showed redness, edema, and white secretions in the vagina. Compared with the VVC model group, the BAEB groups showed improved general state of VVC mice. As revealed by Gram staining, Papanicolaou staining, microdilution assay, and HE staining, compared with the blank control group, the VVC model group showed a large number of hyphae, neutrophils infiltration, and increased fungal load in the vaginal lavage, destroyed vaginal mucosa, and infiltration of a large number of inflammatory cells. BAEB could reduce the transformation of C. albicans from yeast to hyphae. High-dose BAEB could significantly reduce neutrophil infiltration and fungal load. Low-and medium-dose BAEB could reduce the da-mage to the vaginal tissue, while high-dose BAEB could restore the damaged vaginal tissues to normal levels. ELISA results showed that the content of inflammatory cytokines IL-1β, IL-18, and LDH in the VVC model group significantly increased compared with that in the blank control group, and the content of IL-1β, IL-18 and LDH in the medium-and high-dose BAEB groups was significantly reduced compared with that in the VVC model group. WB and qRT-PCR results showed that compared with the blank control group, the VVC model group showed reduced protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues of mice and increased protein and mRNA expression of NLRP3. Compared with the VVC model group, the medium-and high-dose BAEB groups showed up-regulated protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues and inhibited protein and mRNA expression of NLRP3 in vaginal tissues. This study indicated that the therapeutic effect of BAEB on VVC mice was presumably related to the negative regulation of NLRP3 inflammasome by promoting PKCδ/NLRC4/IL-1Ra axis.
Female
;
Animals
;
Humans
;
Mice
;
Candidiasis, Vulvovaginal/drug therapy*
;
Inflammasomes/genetics*
;
Interleukin-18
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
1-Butanol/pharmacology*
;
Fluconazole/therapeutic use*
;
Interleukin 1 Receptor Antagonist Protein/therapeutic use*
;
Mice, Inbred C57BL
;
Candida albicans
;
Cytokines
;
Drugs, Chinese Herbal/pharmacology*
;
Ethanol
;
RNA, Messenger
;
Calcium-Binding Proteins/therapeutic use*
10.Establishment of a recombined mannose-binding lectin protein-magnetic beads-enriched binding recombinant enzyme-assisted polymerase chain reaction assay for Candida in blood samples.
Meng Yi ZHANG ; Xiao Ping CHEN ; Xiu Li SUN ; Xue Jun MA ; Xin Xin SHEN ; Yan Yan GUO
Chinese Journal of Epidemiology 2023;44(5):823-827
Objective: To establish a nested recombinant enzyme-assisted polymerase chain reaction (RAP) technique combined with recombined mannose-binding lectin protein (M1 protein)-magnetic beads enrichment for the detection of Candida albicans (C. albicans) and Candida tropicalis (C. tropicalis) in blood samples for the early diagnosis of candidemia albicans and candidiemia tropicalis. Methods: The primer probes for highly conserved regions of the internal transcribed spacerregions of C. albicans and C. tropicalis were deigned to establish RAP assays for the detections of C. albicans and C. tropicalis; The sensitivity and reproducibility of nucleic acid tests with gradient dilutions of standard strains and specificity of nucleic acid tests with common clinical pathogens causing bloodstream infection were condcuted. M1 protein-magnetic bead enriched plasma C. albicans and C. tropicalis were used for RAP and PCR in with simulated samples and the results were compared. Results: The sensitivity of the established dual RAP assay was 2.4-2.8 copies/reaction, with higher reproducibility and specificity. M1 protein-magnetic bead enrichment of pathogen combined with the dual RAP assay could complete the detections of C. albicans and C. tropicalis in plasma within 4 hours. Fie the pathogen samples at concentration <10 CFU/ml, the number of the samples tested by RAP was higher than that tested by PCR after enrichment. Conclusion: In this study, a dual RAP assay for the detections of C. albicans and C. tropicalis in blood sample was developed, which has the advantages of accuracy, rapidity, and less contaminants and has great potential for rapid detection of Candidemia.
Humans
;
Lectins
;
Candida
;
Candidemia
;
Reproducibility of Results
;
Polymerase Chain Reaction
;
Nucleic Acids
;
Magnetic Phenomena


Result Analysis
Print
Save
E-mail