1.Dental remineralization via poly(amido amine) and restorative materials containing calcium phosphate nanoparticles.
Kunneng LIANG ; Suping WANG ; Siying TAO ; Shimeng XIAO ; Han ZHOU ; Ping WANG ; Lei CHENG ; Xuedong ZHOU ; Michael D WEIR ; Thomas W OATES ; Jiyao LI ; Hockin H K XU
International Journal of Oral Science 2019;11(2):15-15
Tooth decay is prevalent, and secondary caries causes restoration failures, both of which are related to demineralization. There is an urgent need to develop new therapeutic materials with remineralization functions. This article represents the first review on the cutting edge research of poly(amido amine) (PAMAM) in combination with nanoparticles of amorphous calcium phosphate (NACP). PAMAM was excellent nucleation template, and could absorb calcium (Ca) and phosphate (P) ions via its functional groups to activate remineralization. NACP composite and adhesive showed acid-neutralization and Ca and P ion release capabilities. PAMAM+NACP together showed synergistic effects and produced triple benefits: excellent nucleation templates, superior acid-neutralization, and ions release. Therefore, the PAMAM+NACP strategy possessed much greater remineralization capacity than using PAMAM or NACP alone. PAMAM+NACP achieved dentin remineralization even in an acidic solution without any initial Ca and P ions. Besides, the long-term remineralization capability of PAMAM+NACP was established. After prolonged fluid challenge, the immersed PAMAM with the recharged NACP still induced effective dentin mineral regeneration. Furthermore, the hardness of pre-demineralized dentin was increased back to that of healthy dentin, indicating a complete remineralization. Therefore, the novel PAMAM+NACP approach is promising to provide long-term therapeutic effects including tooth remineralization, hardness increase, and caries-inhibition capabilities.
Amines
;
pharmacology
;
Calcium
;
Calcium Phosphates
;
chemistry
;
pharmacology
;
Dentin
;
chemistry
;
Humans
;
Nanocomposites
;
chemistry
;
Nanoparticles
;
Tooth Remineralization
;
methods
2.The effect of procyanidin on periprosthetic osteolysis caused by TCP wear particles in the mouse calvaria and its mechanism.
Kun LIN ; Jia-Hao CHEN ; Ze-Hao FANG ; Cheng-Long YE ; Chao-Jie HAN ; Ming YAN ; Jian FANG ; Yun ZHANG
Chinese Journal of Applied Physiology 2019;35(3):250-255
OBJECTIVE:
To investigate the protective effects of procyanidin on periprosthetic osteolysis caused by tricalcium phosphate (TCP) wear particles in the mouse calvaria and its mechanism.
METHODS:
Forty-eight male ICR mice were randomly divided into sham group, TCP group, and procyanidin (0.2 mg/kg, 1 mg/kg, 5 mg/kg)-treated group (n=12). A periprosthetic osteolysis model in the mouse calvaria was established by implanting 30 mg of TCP wear particles onto the surface of bilateral parietal bones following removal of the periosteum. On the 2 day post-operation, procyanidin (1 mg/kg, 5 mg/kg) was locally injected to the calvaria under the periosteum every other day. After 2 weeks, all the mice were sacrificed to collect the blood samples and the calvaria. Periprosthetic osteolysis and osteoclastogenesis in the mouse calvaria were observed by tartrate resistant acid phosphatase (TRAP) staining and HE staining. mRNA levels of TRAP, capthesin K, c-Fos and NFATc1 in the periprosthestic bone tissue were examined by real-time fluorescence quantitative PCR. Serum contents of total anti-oxidation capacity (T-AOC) and MDA, and superoxide dismutase (SOD) activity were determined by chemical colorimetry. Protein expressions of autophagic biomarkers such as Beclin-1 and LC-3 in periprosthetic bone tissue of the calvaria were examined by Western blot.
RESULTS:
Compared with sham group, periprosthetic osteolysis, osteoclastogenesis, mRNA levels of TRAP, capthesin K, c-Fos and NFATc1, and serum MDA content were increased significantly in the TCP group (P<0.05), whereas serum T-AOC level and SOD activity were decreased. The protein expressions of Beclin-1 and LC-3, and the conversion of LC3-II from LC3-I were both up-regulated markedly in the mouse calvaria of TCP group (P<0.05). Compared with TCP group, osteolysis, osteoclastogenesis, mRNA levels of TRAP, capthesin K, c-Fos and NFATc1 and serum MDA content were decreased obviously in the procyanidine group (P<0.05), serum T-AOC level and SOD activity were increased, the expressions of Beclin-1 and LC-3, and the conversion of LC3-II from LC3-I were down-regulated obviously in the mouse calvaria of procyanidin group (P<0.05).
CONCLUSION
Procyanidin has a protective effect of periprosthetic osteolysis caused by TCP wear particles in the mouse calvaia, its mechanism may be mediated by inhibition of oxidative stress and autophagy.
Animals
;
Autophagy
;
Biflavonoids
;
pharmacology
;
Calcium Phosphates
;
adverse effects
;
Catechin
;
pharmacology
;
Male
;
Mice
;
Mice, Inbred ICR
;
Osteolysis
;
Oxidative Stress
;
Proanthocyanidins
;
pharmacology
;
Prostheses and Implants
;
adverse effects
;
Random Allocation
;
Skull
3.Osteocyte morphology and orientation in relation to strain in the jaw bone.
Vivian WU ; René F M VAN OERS ; Engelbert A J M SCHULTEN ; Marco N HELDER ; Rommel G BACABAC ; Jenneke KLEIN-NULEND
International Journal of Oral Science 2018;10(1):2-2
Bone mass is important for dental implant success and is regulated by mechanoresponsive osteocytes. We aimed to investigate the relationship between the levels and orientation of tensile strain and morphology and orientation of osteocytes at different dental implant positions in the maxillary bone. Bone biopsies were retrieved from eight patients who underwent maxillary sinus-floor elevation with β-tricalcium phosphate prior to implant placement. Gap versus free-ending locations were compared using 1) a three-dimensional finite-element model of the maxilla to predict the tensile strain magnitude and direction and 2) histology and histomorphometric analyses. The finite-element model predicted larger, differently directed tensile strains in the gap versus free-ending locations. The mean percentage of mineralised residual native-tissue volume, osteocyte number (mean ± standard deviations: 97 ± 40/region-of-interest), and osteocyte shape (~90% elongated, ~10% round) were similar for both locations. However, the osteocyte surface area was 1.5-times larger in the gap than in the free-ending locations, and the elongated osteocytes in these locations were more cranially caudally oriented. In conclusion, significant differences in the osteocyte surface area and orientation seem to exist locally in the maxillary bone, which may be related to the tensile strain magnitude and orientation. This might reflect local differences in the osteocyte mechanosensitivity and bone quality, suggesting differences in dental implant success based on the location in the maxilla.
Biopsy
;
Bone-Implant Interface
;
Calcium Phosphates
;
pharmacology
;
Dental Implants
;
Finite Element Analysis
;
Humans
;
Maxilla
;
surgery
;
Osteocytes
;
physiology
;
Radiography, Panoramic
;
Sinus Floor Augmentation
;
Tensile Strength
4.Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers.
Yang HUANG ; Jinsong KONG ; Xiaokang GONG ; Xin ZHENG ; Haibao WANG ; Jianwei RUAN
Journal of Zhejiang University. Medical sciences 2017;46(6):593-599
Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P<0.05). The immunofluorescence staining and MTT results indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P<0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.
3T3 Cells
;
Animals
;
Biocompatible Materials
;
Bone Cements
;
chemistry
;
metabolism
;
pharmacology
;
Calcium Phosphates
;
metabolism
;
Cell Proliferation
;
drug effects
;
Chitosan
;
chemistry
;
pharmacology
;
Mice
;
Nanofibers
;
chemistry
;
Oligopeptides
;
chemistry
5.Effect of 2-methacryloyloxyethyl phosphorylcholine on the protein-repellent property of dental adhesive.
Ning ZHANG ; Ke ZHANG ; Huakun XU ; Yuxing BAI
Chinese Journal of Stomatology 2016;51(3):172-175
OBJECTIVETo evaluate the effect of 2-methacryloyloxyethyl phosphorylcholine (MPC) and nanoparticles of amorphous calcium phosphate (NACP) on the protein-repellent property of dental adhesive.
METHODSMPC and NACP were incorporated into SBMP as the test group. Scotchbond Multi-Purpose (SBMP) was used as control group. Human dentin shear bond strengths were measured. Protein adsorption onto samples was determined by micro bicinchoninic acid (BCA) method. A dental plaque microcosm biofilm model with human saliva as inoculum was used to investigate biofilm viability.
RESULTSThe dentin bond strength of modified group was (28.7±2.2) MPa, which was not significantly different from that of the SBMP control group. The amount of protein adsorption in the modified group and the SBMP control group were (0.21±0.02) µg/cm(2) and (4.17±0.45) µg/cm(2) respectively. Lactic acid production of biofilms in modified group and SBMP control were (7.71 ± 1.01) mmol/L and (19.18 ± 2.34) mmol/L repectively.
CONCLUSIONSMPC-NACP based dental adhesive greatly reduce the protein adsorption and bacterial adhesion, without compromising dentin shear bond strength. This novel bonding agent may have wide application.
Adsorption ; Biofilms ; drug effects ; growth & development ; Calcium Phosphates ; pharmacology ; Dental Cements ; pharmacology ; Dental Plaque ; Dentin ; chemistry ; Humans ; Lactic Acid ; biosynthesis ; Methacrylates ; pharmacology ; Nanoparticles ; Phosphorylcholine ; analogs & derivatives ; pharmacology ; Resin Cements ; pharmacology ; Saliva ; Tensile Strength
6.Tricaicium phosphate complex pre-loaded with bone morphogenetic protein-2 or platelet derived growth factor-BB for repairing critical-size cranial defects in SD rats.
Rui-Xuan HE ; Jian-Bin XIAO ; Bing SONG ; Zhi-Hui HUANG ; Liang ZHAO
Journal of Southern Medical University 2016;36(3):345-350
OBJECTIVETo observe the effect of a new biomaterial in promoting the bone regeneration for repairing critical-size cranial defects in SD rats.
METHODSCritical-size cranial defects were induced in 3-month-old male Sprague-Dawley rats and repaired with the implants of calcium phosphate from growth factor enhanced matrix 21 (CaPfromGEM21, control), CaPfromGEM21 preloaded with 10 ng bone morphogenetic protein-2 (BMP-2), CaPfromGEM21 preloaded with 100 ng BMP-2, CaPfromGEM21 preloaded with 0.3 µg platelet-derived growth factor-BB (PDGF-BB), or CaPfromGEM21 preloaded with 3 µg PDGF-BB. The defects were examined 6 weeks after the surgery with X-ray, micro-CT, HE staining and quantitative assessments.
RESULTSX-ray showed defect repair in all the groups. The fracture line became obscure, and the defects were almost fully repaired by the regenerated bone tissues in PDGF-BB group. Micro-CT demonstarted new bone formation in the defects. The new bone volume was significantly greater in PDGF-BB groups than in BMP-2 groups (P<0.05). HE staining revealed the presence of new bones in the defects and new vessels in and around the new bones without inflammatory cells. The new bone area fraction was significantly greater in 10 ng BMP-2 group and 0.3 µg PDGF-BB group than in the control group (P<0.05), and the new vessel density was similar in the all the 4 cytokine-preloaded groups and all significantly greater than that in the blank and CaPfromGEM21 control group (P<0.05).
CONCLUSIONCaPfromGem21 combined with BMP-2 or PDGF-BB has good biocompatibility and can better promote bone regeneration for repairing bone defects.
Animals ; Biocompatible Materials ; Bone Morphogenetic Protein 2 ; pharmacology ; Bone Regeneration ; drug effects ; Calcium Phosphates ; pharmacology ; Male ; Prostheses and Implants ; Proto-Oncogene Proteins c-sis ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Skull ; pathology ; Wound Healing
7.Low-intensity pulsed ultrasound prompts tissue-engineered bone formation after implantation surgery.
Juyong WANG ; Juqiang WANG ; Asou YOSHINORI ; Fu PAUL ; Huiliang SHEN ; Jiani CHEN ; Shinichi SOTOME ; Zhao LIU ; Kenichi SHINOMIYA ;
Chinese Medical Journal 2014;127(4):669-674
BACKGROUNDA practical problem impeding clinical translation is the limited bone formation seen in artificial bone grafts. Low-pressure/vacuum seeding and dynamic culturing in bioreactors have led to a greater penetration into the scaffolds, enhanced production of bone marrow cells, and improved tissue-engineered bone formation. The goal of this study was to promote more extensive bone formation in the composites of porous ceramics and bone marrow stromal cells (BMSCs).
METHODSBMSCs/β-tricalcium phosphate (β-TCP) composites were subcultured for 2 weeks and then subcutaneously implanted into syngeneic rats that were split into a low-intensity pulsed ultrasound (LIPUS) treatment group and a control group. These implants were harvested at 5, 10, 25, and 50 days after implantation. The samples were then biomechanically tested and analyzed for alkaline phosphate (ALP) activity and osteocalcin (OCN) content and were also observed by light microscopy.
RESULTSThe levels of ALP activity and OCN content in the composites were significantly higher in the LIPUS group than in the control group. Histomorphometric analysis revealed a greater degree of soft tissue repair, increased blood flow, better angiogenesis, and more extensive bone formation in the LIPUS groups than in the controls. No significant difference in the compressive strength was found between the two groups.
CONCLUSIONLIPUS treatment appears to enhance bone formation and angiogenesis in the BMSCs/β-TCP composites.
Animals ; Bone Marrow Cells ; physiology ; Bone Transplantation ; Calcium Phosphates ; pharmacology ; Male ; Osteogenesis ; physiology ; Rats ; Stromal Cells ; Tissue Engineering ; methods ; Transplantation, Isogeneic ; Ultrasonics ; methods
8.Effects of administration and local application of epimedium on the fracture healing in osteoporosis rats.
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(6):822-826
OBJECTIVETo study the effects of administration or local application of epimedium on the fracture healing in osteoporosis rats.
METHODSEighty-two 4-month old clean female rats, 210-250 g, were randomly divided into the experimental group (n = 75) and the control group (n = 7). The bilateral ovaries were resected in the experimental group, while only little fat tissue around the ovary was resected in the control group. Ten weeks after operation the osteoporosis model was successfully established verified by bone densitometry and scanning electron microscopy (SEM). The femur fracture models were established in the rest 72 rats of the experimental group. They were randomly divided into 3 groups, 24 in each group, i.e., the calcium phosphate cement (CPC) group (Group A), the CPC-epimedium group (Group B), and the epimedium administration group (Group C). The serum alkaline phosphatase (ALP) levels of the 3 groups were determined 2, 4, 8, and 12 weeks after surgery. The vitodynamical test and observation of the histological section were performed.
RESULTSThe serum ALP levels increased to some extent in the 3 groups 2, 4, and 8 weeks after bone fracture surgery. But the increase was more obvious in Group B with statistical difference shown when compared with Group A and C (P < 0.05). The ALP level in Group B decreased to the normal range till the 12th week. The bone fracture had not completely healed in Group C and A. Their ALP levels decreased to some extent, but were still maintained to a comparatively higher level, showing statistical difference when compared with that of Group B (P < 0.05). These results were agreeable with the results of the histological observation. Better bone activity promoting results were shown in Group B. The vitodynamical test results of the femur of Group B were all higher than those of Group A and C at each time point (P < 0.05).
CONCLUSIONSLocal application of epimedium could accelerate the fracture healing in osteoporosis rats. It showed better effects when compared with oral administration at the same dose.
Alkaline Phosphatase ; blood ; Animals ; Bone Cements ; therapeutic use ; Calcium Phosphates ; therapeutic use ; Drugs, Chinese Herbal ; administration & dosage ; pharmacology ; therapeutic use ; Epimedium ; Female ; Fracture Healing ; drug effects ; Fractures, Bone ; drug therapy ; etiology ; Osteoporosis ; complications ; drug therapy ; Ovariectomy ; Rats
9.Preparation of alpha-tricalcium phosphate/HA whisker/carboxymethyl chitosan-gelatin composite porous bone cement.
Dongjuan WEI ; Xiang ZHANG ; Jianwen GU ; Ping HU ; Weizhong YANG ; Dongning CHEN ; Dali ZHOU
Journal of Biomedical Engineering 2012;29(3):491-495
In order to investigate the effects of HA whisker and carboxymethyl chitosan-gelatin(CMC-Gel) on the mechanical properties of porous calcium phosphate cement, a series of alpha-tricalcium phosphate (alpha-TCP), HA whisker and L-sodium glutamate porogen with different mass fractions were mixed, and setting liquid was added to them to prepare alpha-TCP/HA whisker composite porous bone cement. Then, the cement was immersed in a series of CMC-Gel solutions which had different weight ratios of CMC to Gel to prepare alpha-TCP/HA whisker/CMC-Gel composite porous bone cement. The compressive strengths and microstructure of cement were characterized by mechanical testing machine and SEM. The results showed that when the mass fraction of HA whisker is 4%, the compressive strength of alpha-TCP/HA whisker composite porous bone cement reaches 2.57MPa, which is 1.81 times that of alpha-TCP bone cement. When the weight ratio of CMC to Gel is 50:50, the compressive strength of alpha-TCP/HA whisker/CMC-Gel composite porous bone cement is 3. 34MPa, which is 2.35 times that of alpha-TCP bone cement, and the toughness of the composite cement is greatly improved as well.
Biocompatible Materials
;
chemistry
;
pharmacology
;
Bone Cements
;
chemical synthesis
;
Calcium Phosphates
;
chemistry
;
Chitosan
;
analogs & derivatives
;
chemical synthesis
;
chemistry
;
Compressive Strength
;
Gelatin
;
chemistry
;
Hydroxyapatites
;
chemical synthesis
;
chemistry
;
Porosity
10.Preparation and ectopic osteoinduction study of macroporous bone substitute with calcium phosphate cements and rhBMP-2 loaded gelatin microspheres.
Meng LI ; Xu-dong LIU ; Xing-yan LIU ; Bao-feng GE
China Journal of Orthopaedics and Traumatology 2011;24(5):411-415
OBJECTIVETo prepare macroporous bone substitute composed of calcium phosphate cements and rhBMP-2 loaded gelatin microspheres, and to investigate ectopic osteoinduction of the composite.
METHODSAfter being prepared by improved emulsified cold-condensation method and crosslinked by 5% genipin solution,gelatin microspheres (GMs) were observed by scanning electron microscope (SEM) and loaded with rhBMP-2 by adsorption. Macroporous bone substitute was developed by mixing calcium phosphate cement (CPC) with 2.5% GMs, being as the experimental group,and CPC with rhBMP-2 was the control group. After the both composites had been soaked in the sodium chloride for 1 week or 3 weeks, compressive strength of the composites were tested, and the cross-sections were observed by SEM. Concentrations of rhBMP-2 in the solutions at different time by ELISA method and the cumulative drug release amount was calculated. The composites had been implanted in the muscle bags of the mouses for 3 weeks. Then the tissues around the materials were collected, stained by hematoxylin and eosin, and Ca and ALP in the tissues were also measured.
RESULTSGelatin microspheres were spherical with diameters of (62 +/- 18) microm. Macropores appeared in the experimental materials 1 week and 3 weeks after being soaked,and total porosity, macroporosity, cumulative release amount of rhBMP-2 in the experimental group were higher than that in the control. But compressive strength of the experimental group was lower than that of the control group 3 weeks after being soaked. Results of HE stain showed chondral formation in both groups, but there were more chondral tissues in the experiment group, and so were the concentrations of Ca and ALP.
CONCLUSIONMacroporous calcium phosphate cement can be prepared by using rhBMP-2 loaded gelatin microspheres, and it is an excellent bone substitute due to it's proterty of promoting rhBMP release and powerful ectopic osteoinduction.
Animals ; Bone Cements ; chemistry ; Bone Morphogenetic Protein 2 ; chemistry ; Bone Substitutes ; chemistry ; pharmacology ; Calcium Phosphates ; chemistry ; Gelatin ; chemistry ; Humans ; Male ; Mice ; Microspheres ; Osteogenesis ; drug effects ; Porosity ; Recombinant Proteins ; chemistry

Result Analysis
Print
Save
E-mail