1.Characteristics of Atmospheric Fine Particulate Matter (PM ) Induced Differentially Expressed Proteins Determined by Proteomics and Bioinformatics Analyses.
Kai ZHENG ; Ying CAI ; Bing Yu WANG ; Shuang Jian QIN ; Bo Ru LI ; Hai Yan HUANG ; Xiao Yun QIN ; Ding Xin LONG ; Zhao Hui ZHANG ; Xin Yun XU
Biomedical and Environmental Sciences 2020;33(8):583-592
Objective:
To screen the differentially expressed proteins (DEPs) in human bronchial epithelial cells (HBE) treated with atmospheric fine particulate matter (PM ).
Methods:
HBE cells were treated with PM samples from Shenzhen and Taiyuan for 24 h. To detect overall protein expression, the Q Exactive mass spectrometer was used. Gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and Perseus software were used to screen DEPs.
Results:
Overall, 67 DEPs were screened in the Shenzhen sample-treated group, of which 46 were upregulated and 21 were downregulated. In total, 252 DEPs were screened in the Taiyuan sample-treated group, of which 134 were upregulated and 118 were downregulated. KEGG analysis demonstrated that DEPs were mainly enriched in ubiquitin-mediated proteolysis and HIF-1 signal pathways in Shenzhen PM samples-treated group. The GO analysis demonstrated that Shenzhen sample-induced DEPs were mainly involved in the biological process for absorption of various metal ions and cell components. The Taiyuan PM -induced DEPs were mainly involved in biological processes of protein aggregation regulation and molecular function of oxidase activity. Additionally, three important DEPs, including ANXA2, DIABLO, and AIMP1, were screened.
Conclusion
Our findings provide a valuable basis for further evaluation of PM -associated carcinogenesis.
Air Pollutants
;
analysis
;
Bronchi
;
drug effects
;
metabolism
;
Computational Biology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Gene Expression
;
drug effects
;
Humans
;
Mass Spectrometry
;
Particle Size
;
Particulate Matter
;
analysis
;
Proteomics
2.Effect of acupuncture on TGF-β1/Smads pathway in mice with airway remodeling mic.
Huihui LIU ; Jiayi LIU ; Meiyu PENG ; Yuhui LI ; Chunqiao LI
Journal of Southern Medical University 2018;38(11):1372-1377
OBJECTIVE:
To investigate the effect of acupuncture on TGF-β1/Smads signaling pathway in the lung tissue of mice with airway remodeling.
METHODS:
Thirty specific pathogen-free mice were randomly divided into blank group, model group and acupuncture group (=10). Mouse models of asthma were established in the model group and the acupuncture group, and the mice in the latter group received 7 acupuncture therapies (at bilateral Fei Shu, Da Zhui and Zu Sanli, 20 min each time) every other day, starting on the 10th day after the modeling. At 24 h after the last acupuncture, the mice were subjected to inhalation of 1% OVA for 3 days, and 24 h after the last challenge, the mice were given methacholine chloride (Mch) inhalation at different concentrations for measurement of lung resistance using a noninvasive stroke volume meter. HE staining was used to observe the pathological changes in the lung tissues, and TGF-β1 levels in the the bronchoalveolar lavage fluid (BALF) and serum were detected using ELISA; Western blotting was used to detect the differential protein expressions in the airway smooth muscles between the two groups. The airway smooth muscle cells were isolated from the mice in the acupuncture group and treated with a TGF- β1 inhibitor (LY2157299), and the relative expressions of type-Ⅰ and Smads proteins were detected using Western blotting.
RESULTS:
The mice in the model showed obvious tracheal fistula with airway pathologies including lumen narrowing, bronchial mucosa thickening, dissociation of the epithelial cells, and thickening of the alveolar septum and airway smooth muscles. These pathological changes were obviously milder in the acupuncture group. The asthmatic mice exhibited significantly increased lung resistance in positive correlation with Mch concentration. Serum TGF-β1 level was significantly elevated in asthmatic mice ( < 0.05); TGF-β1 levels in the serum and BALF were significantly lower in the acupuncture group than in the model group ( < 0.05). In the model group, the expressions of -SMA, TGF-β1 and Smads in the airway smooth muscles were significantly higher than those in the other two groups (both < 0.05). In cultured airway smooth muscle cells, the expressions of type-Ⅰ and Smads were significantly higher in cells treated with LY2157299 than in the control cells (>0.05).
CONCLUSIONS
Acupuncture can inhibit airway remodeling by inhibiting the expression of airway TGF-β1 and down-regulating the expression of Smads and -SMA to reduce airway inflammatory response. Airway expressions of type-Ⅰ and Smads proteins remain high after inhibiting TGF-β1. Acupuncture may control asthma progression through the TGF-β1/Smads pathway.
Acupuncture Points
;
Acupuncture Therapy
;
Airway Remodeling
;
Airway Resistance
;
Animals
;
Asthma
;
metabolism
;
pathology
;
therapy
;
Bronchi
;
pathology
;
Disease Progression
;
Lung
;
metabolism
;
physiopathology
;
Mice
;
Muscle, Smooth
;
Random Allocation
;
Smad Proteins
;
analysis
;
metabolism
;
Transforming Growth Factor beta1
;
analysis
;
metabolism
3.Physical and chemical characteristics of PM2.5 and its toxicity to human bronchial cells BEAS-2B in the winter and summer.
Hui-Hui ZHANG ; Zheng LI ; Yu LIU ; Ping XINAG ; Xin-Yi CUI ; Hui YE ; Bao-Lan HU ; Li-Ping LOU
Journal of Zhejiang University. Science. B 2018;19(4):317-326
With the increasing occurrence of haze during the summer, the physicochemical characteristics and toxicity differences in PM2.5 in different seasons are of great concern. Hangzhou is located in an area that has a subtropical monsoon climate where the humidity is very high during both the summer and winter. However, there are limited studies on the seasonal differences in PM2.5 in these weather conditions. In this test, PM2.5 samples were collected in the winter and summer, the morphology and chemical composition of PM2.5 were analyzed, the toxicity of PM2.5 to human bronchial cells BEAS-2B was compared, and the correlation between PM2.5 toxicity and the chemical composition was discussed. The results showed that during both the winter and summer, the main compounds in the PM2.5 samples were water-soluble ions, particularly SO42-, NO3-, and NH4+, followed by organic components, while heavy metals were present at lower levels. The higher the mass concentration of PM2.5, the greater its impact on cell viability and ROS levels. However, when the mass concentration of PM2.5 was similar, the water extraction from the summer samples showed a greater impact on BEAS-2B than that from the winter samples. The cytotoxicity of PM2.5 was closely associated with heavy metals and organic pollutants but less related to water-soluble ions.
Air Pollutants/toxicity*
;
Bronchi/metabolism*
;
Carbon/chemistry*
;
Environmental Monitoring
;
Humans
;
Ions
;
Metals, Heavy
;
Organic Chemicals
;
Particle Size
;
Particulate Matter/toxicity*
;
Seasons
;
Temperature
;
Water
4.Streptococcus pneumoniae induces SPLUNC1 and the regulatory effects of resveratrol.
Yan-Ping SHANG ; Li LIN ; Chang-Chong LI
Chinese Journal of Contemporary Pediatrics 2017;19(1):111-116
OBJECTIVETo investigate the host-defense role of short palate, lung, and nasal epithelium clone 1 (SPLUNC1) in Streptococcus pneumoniae (SP) infection and the effect of resveratrol (Res) on SPLUNC1 expression, and to provide new thoughts for the treatment of diseases caused by SP infection.
METHODSAccording to the multiplicity of infection (MOI), BEAS-2B cells with SP infection were divided into control group, MOI20 SP group, and MOI50 SP group. According to the different concentrations of Res, the BEAS-2B cells with MOI20 SP infection pretreated by Res were divided into 12.5Res+SP group, 25Res+SP group, and 50Res+SP group (the final concentrations of Res were 12.5, 25, and 50 μmol/L, respectively). Cell Counting Kit-8 was used to measure cell activity and determine the optimal concentration and action time of SP and Res. In the formal experiment, the cells were divided into control group, Res group, SP group, and Res+SP group. Real-time PCR and ELISA were used to measure the mRNA and protein expression of SPLUNC1.
RESULTSOver the time of SP infection, cell activity tended to decrease. Compared with the control group and the MOI20 SP group, the MOI50 SP group had a reduction in cell activity. Compared with the MOI20 SP group, the 25Res+SP group had increased cell activity and the 50Res+SP group had reduced cell activity (P<0.05). MOI20 SP bacterial suspension and 25 μmol/L Res were used for the formal experiment. Over the time of SP infection, the mRNA expression of SPLUNC1 in BEAS-2B cells firstly increased and then decreased in the SP group and the Res+SP group (P<0.05). Compared with the SP group, the Res+SP group had significant increases in the mRNA and protein expression of SPLUNC1 at all time points (P<0.05). Compared with the control group, the Res group had no significant changes in the mRNA and protein expression of SPLUNC1 (P>0.05).
CONCLUSIONSSP infection can induce SPLUNC1 expression and the host-defense role of SPLUNC1. Res can upregulate SPLUNC1 expression during the development of infection and enhance cell protection in a concentration- and time-dependent manner.
Bronchi ; metabolism ; Cells, Cultured ; Cytoprotection ; Epithelial Cells ; metabolism ; Glycoproteins ; analysis ; genetics ; physiology ; Humans ; Phosphoproteins ; analysis ; genetics ; physiology ; RNA, Messenger ; analysis ; Stilbenes ; pharmacology ; Streptococcus pneumoniae ; pathogenicity
5.Effect of aminophylline and simvastatin on airway inflammation and mucus hypersecretion in rats with chronic obstructive pulmonary disease.
Sheng WANG ; Lingling XIONG ; Xue DENG ; Qun ZHOU ; Chunying LI ; Wei REN ; Chundong ZHU
Journal of Central South University(Medical Sciences) 2016;41(1):37-43
OBJECTIVE:
To observe the role of aminophylline and simvastatin in preventing and curing chronic obstructive pulmonary disease (COPD), and to explore the underlying mechanisms based on airway inflammation and mucus hypersecretion.
METHODS:
The rat model of COPD was established by combination of cigarette smoking with intratracheal lipopolysaccharide (LPS) injection. Male SD rats were randomly divided into 4 groups (n=10 per group): a control group, a COPD group, an aminophylline group and a simvastatin group. The rats in the control group and the COPD group were treated with normal saline once a day via intragastric administration, while the rats in the aminophylline group and the simvastatin group were treated with aminophylline (5 g/L) and simvastatin (0.5 g/L) 1 mL/100 g once a day via intragastric administration, respectively. Pulmonary function and pathological changes in bronchus and lung were observed. The levels of IL-8, IL-17, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). The mRNA and protein expressions of TLR4 and mucin 5AC (MUC5AC) in bronchi and lung tissues were detected by real-time PCR and Western blot, respectively.
RESULTS:
Pulmonary function and the pathophysiologic changes in bronchi and lung tissues in the COPD rats were consistent with typical phenotype of COPD. Compared with the control group, lung function indexes were significantly attenuated in the COPD group, while the levels of IL-8, IL-17, and TNF-α in BALF as well as the mRNA and protein levels of MUC5AC and TLR4 were significantly increased. Compared with the COPD group, lung function indexes were significantly increased in the aminophylline group and simvastatin group (P<0.01), while pulmonary pathological damages, the levels of IL-8, IL-17, and TNF-α in BALF as well as the mRNA and protein levels of MUC5AC and TLR4 were significantly decreased (P<0.01). Compared with the aminophylline group, the peak expiratory flow as well as the levels of IL-8, IL-17, and TNF-α in the simvastatin group were elevated (P<0.05). There are no significant difference in the mRNA and protein levels of MUC5AC and TLR4 between the 2 groups (P﹥0.05).
CONCLUSION
Aminophylline and simvastatin can decrease IL-8, IL-17, and TNF-α levels in BALF and inhibit the expression of MUC5AC and TLR4 in airway and lung tissues in COPD rats, suggesting that they may have a preventive and therapeutic effect on COPD through reducing the airway inflammation and mucus hypersecretion.
Aminophylline
;
pharmacology
;
Animals
;
Bronchi
;
metabolism
;
Bronchoalveolar Lavage Fluid
;
chemistry
;
Cytokines
;
chemistry
;
Inflammation
;
drug therapy
;
Lipopolysaccharides
;
Lung
;
metabolism
;
physiopathology
;
Male
;
Mucin 5AC
;
metabolism
;
Mucus
;
metabolism
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Simvastatin
;
pharmacology
;
Smoke
;
adverse effects
;
Smoking
;
adverse effects
;
Toll-Like Receptor 4
;
metabolism
6.Dexamethasone decreases IL-29 expression in house dust mite-stimulated human bronchial epithelial cells.
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(6):823-827
The aim of this study was to explore the effect of IL-29 on the progression of airway allergic disease by detecting the level of IL-29 in airway allergic cell models stimulated by house dust mite (HDM) in the presence or absence of dexamethasone (DEX). The same batch of human bronchial epithelial cells in exponential growth phase was randomly divided into five groups: blank group (A), 300 ng/mL HDM group (B), 1000 ng/mL HDM group (C), 3000 ng/mL HDM group (D), and 300 ng/mL HDM+100 ng/mL DEX group (E). The IL-29 mRNA expression was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The IL-29 protein expression in cell suspension was detected by ELISA. The results showed that after stimulation with HDM for 24 h, the expression of IL-29 was increased significantly, and after co-stimulation with HDM and DEX for 24 h, the expression of IL-29 in group E was significantly lower than that in the groups stimulated by HDM alone but higher than that in the group A. The differences between the different groups were significant (F=132.957, P<0.01). Additionally, the higher the concentration of HDM was, the more significant the increase in the IL-29 expression was. In conclusion, IL-29 may play a role in the progression of airway allergic disease including asthma.
Adult
;
Animals
;
Bronchi
;
cytology
;
drug effects
;
metabolism
;
Cells, Cultured
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
metabolism
;
Humans
;
Interleukins
;
metabolism
;
Mites
7.Effect of Yifei Jianpi Recipe on Airway Inflammation and Airway Mucus Hypersecretion of Chronic Obstructive Pulmonary Disease Model Rats.
Sheng WANG ; Ling-ling XIONG ; Wei REN ; Chun-dong ZHU ; Chun-ying LI ; Qun ZHOU
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(8):993-999
OBJECTIVETo observe preventive and therapeutic effect of Yifei Jianpi Recipe (YJR) on chronic obstructive pulmonary disease (COPD) model rats and to explore its mechanism from the way of airway inflammation and airway mucus hypersecretion.
METHODSThe COPD rat model was established by using cigarette smoking combined with intratracheal injection of lipopolysaccharide (LPS). Male SD rats were randomly divided into the blank control group (control group), the model group, the YJR group, 6 in each group. Forced vital capacity (FVC), forced expiratory volume in 0. 1 second (FEV0. 1), FEVO. 1/FVC, peak expiratory flow (PEF) was tested by lung function device. Pathological changes of bronchi and lung tissues were observed by HE staining. Airway Goblet cells were observed using AB-PAS staining. Contents of IL-8, IL-17, and TNF-α in bronchoalveolar lavage fluid (BALF) were measured by enzyme-linked immunosorbent assay (ELISA). Protein expressions of intercellular cell adhesion molecule-1 (ICAM-1), nuclear factor KB (NF-KB), mucin 5AC (Muc5AC), and Toll-like receptor 4 (TLR4) in rat airway were detected by immunohistochemical assay. mRNA expressions of TLR4 and Muc5AC in bronchi and lung tissues were detected by real-time quantitative PCR (RT qPCR).
RESULTSChanges of bronchi and lung tissues in the model group rats were consistent with typical pathological manifestations of COPD. Compared with the model group, the degree of lung injury was significantly alleviated in the YJR group. Compared with the control group, FVC, FEV0. 1, FEVO. I/FVC, and PEF were decreased (P <0. 01), contents of IL-8, IL-17, and TNF-α in BALF were significantly increased (P <0. 01), protein expressions of ICAM-1, NF-KB, Muc5AC, and TLR4, mRNA expression levels of Muc5AC and TLR4 in bronchi and lung tissues were also significantly increased in the model group (P <0. 01). Compared with the model group, FVC, FEV0. 1, FEV0. 1/FVC, and PEF were significantly increased in the YJR group (P <0. 01, P <0. 05), but the rest indices were significantly lowered (P <0. 01, P <0. 05).
CONCLUSIONYJR could decrease contents of IL-8, IL-17, and TNF-α in BALF of COPD model rats, inhibit protein expression levels of ICAM-1, NF-κB, Muc5AC, and TLR4.in airway and lung tissues, thus playing preventive and therapeutic roles by reducing airway inflammation and airway mucus hypersecretion.
Animals ; Bronchi ; Bronchoalveolar Lavage Fluid ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Inflammation ; Intercellular Adhesion Molecule-1 ; metabolism ; Interleukin-17 ; metabolism ; Interleukin-8 ; metabolism ; Lipopolysaccharides ; Lung ; Male ; Models, Animal ; Mucin 5AC ; metabolism ; Mucus ; metabolism ; NF-kappa B ; metabolism ; Pulmonary Disease, Chronic Obstructive ; drug therapy ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Toll-Like Receptor 4 ; metabolism ; Tumor Necrosis Factor-alpha ; metabolism
8.Transcriptional Factor Snail Mediates Epithelial-Mesenchymal Transition in Human Bronchial Epithelial Cells Induced by Silica.
Yong Bin HU ; Fei Feng LI ; Zheng Hao DENG ; Pin Hua PAN
Biomedical and Environmental Sciences 2015;28(7):544-548
Epithelial-mesenchymal transition (EMT) plays an important role in fibrotic diseases. We have previously showed that silica induces EMT in human bronchial epithelial cells (BECs); however, the underlying mechanism of silica-induced EMT is poorly understood. In the present study, we investigated the role of Snail in silica-induced EMT in human BECs in vitro. Human BECs were treated with silica at various concentrations and incubation times. Then MTT assay, western blot, electrophoretic mobility shift assay (EMSA), and small interfering RNA (siRNA) transfection were performed. We found that silica increased the expression and DNA binding activity of Snail in human BECs. SNAI siRNA inhibited the silica-induced expression of Snail. Moreover, SNAI siRNA upregulated the expression of epithelial marker E-cadherin, but attenuated the expression of mesenchymal marker α-smooth muscle actin and vimentin in silica-stimulated cells. These results suggest that Snail mediates the silica-induced EMT in human BECs.
Actins
;
metabolism
;
Blotting, Western
;
Bronchi
;
cytology
;
drug effects
;
metabolism
;
Cadherins
;
metabolism
;
Cell Culture Techniques
;
Cell Line
;
Cell Survival
;
drug effects
;
Electrophoretic Mobility Shift Assay
;
Epithelial Cells
;
cytology
;
drug effects
;
metabolism
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Humans
;
Particle Size
;
RNA, Small Interfering
;
genetics
;
Silicon Dioxide
;
toxicity
;
Snail Family Transcription Factors
;
Transcription Factors
;
genetics
;
metabolism
9.Inhibitory effect of miR-20b on airway inflammation in asthmatic mice.
Hua MA ; Yu-Lan LUO ; Shu-Jun GUO ; Lin SHEN ; Chuan-Wang SONG
Journal of Southern Medical University 2015;35(10):1463-1466
OBJECTIVETo explore the effect of miR-20b in inhibiting airway inflammation in a mouse model of asthma.
METHODSFemale BALB/c mouse models of asthma, established by sensitizing and challenging the mice with a mixture of ovalbumin and aluminum hydroxide, were subjected to intranasal instillation of 20 µg miR-20b mimics or a miR-20b scramble every 3 days. On day 49, bronchoalveolar lavage fluid (BALF) was collected from the mice to examine the counts of total cells and different cell populations; HE staining was used to observe the pathological changes of the lung tissue, and the concentration of vascular endothelial growth factor (VEGF) in BALF was detected by ELISA.
RESULTSTreatment of the asthmatic mice with miR-20b mimics decreased not only the counts of the total leukocytes, neutrophils and eosinophils in the BALF but also mucus secretion in the airway and inflammatory cell infiltration around the bronchus, and lessened thickening of the airway mucosa. Instillation with miR-20b mimics significantly reduced the concentration of VEGF in BALF from 28.55±3.42 pg/mL in the asthma model group to 18.19±3.67 pg/mL (P<0.01).
CONCLUSIONMiR-20b can inhibit airway inflammation in asthmatic mice possibly by reducing the expression of VEGF.
Animals ; Asthma ; physiopathology ; therapy ; Bronchi ; Bronchoalveolar Lavage Fluid ; Disease Models, Animal ; Enzyme-Linked Immunosorbent Assay ; Eosinophils ; Female ; Inflammation ; physiopathology ; therapy ; Leukocyte Count ; Lung ; Mice ; Mice, Inbred BALB C ; MicroRNAs ; pharmacology ; Neutrophils ; Ovalbumin ; Respiratory System ; physiopathology ; Vascular Endothelial Growth Factor A ; metabolism
10.Role of transient receptor potential canonical 1 in airway remodeling and effect of budesonide on its pulmonary expression in asthmatic guinea pigs.
Na LI ; Ye HE ; Min-Chao LI
Journal of Southern Medical University 2015;35(10):1374-1379
OBJECTIVETo explore the role of transient receptor potential canonical 1 (TRPC1) in airway remodeling and the effect of budesonide intervention on its expression in the lungs of guinea pigs with ovalbumin-induced asthma.
METHODSFifty male guinea pigs were randomized into 5 equal groups, including a blank control group, ovalbumin group, ovalbumin+TRPC1 siRNA group, ovalbumin+luciferase siRNA group, and ovalbumin+budesonide group. After corresponding treatments, bronchoalveolar lavage was collected from the guinea pigs for eosinophils analysis and detection of IL-5 and IL-13 levels using ELISA. The lung tissues were stained with HE and Masson's trichrome to observe the bronchial wall thickness, smooth muscle hypertrophy, subepithelial collagen deposition, and lung inflammations. Immunohistochemistry and real-time quantitative PCR were performed to detect TRPC1 protein and mRNA expressions in the lungs, respectively.
RESULTSThe guinea pig models of ovalbumin-induced asthma showed significantly increased thickness of the bronchial wall, smooth muscle hypertrophy, collagen deposition and inflammatory cell infiltration, but these pathologies were obviously alleviated by treatment with TRPC1 siRNA or budesonide (P/0.05). Immunohistochemstry showed that TRPC1 protein was distributed mainly on the cell membrane and in the nuclei of the basal cells or columnar epithelial cells.
CONCLUSIONThe up-regulated expression of TRPC1 ion channel is closely associated with the occurrence and progression of airway remodeling and chronic airway inflammation in asthma. Budesonide can partially suppress airway remodeling and inflammation by regulating the expression of TRPC1.
Airway Remodeling ; Animals ; Asthma ; drug therapy ; metabolism ; Bronchi ; pathology ; Budesonide ; pharmacology ; Disease Models, Animal ; Guinea Pigs ; Inflammation ; metabolism ; Interleukin-13 ; metabolism ; Interleukin-5 ; metabolism ; Leukocyte Count ; Lung ; drug effects ; metabolism ; Male ; Ovalbumin ; TRPC Cation Channels ; metabolism

Result Analysis
Print
Save
E-mail