1.A Precise and Portable Detection System for Infectious Pathogens Based on CRISPR/Cas Technology
Yi-Chen LIU ; Ru-Jian ZHAO ; Bai-Yang LYU ; De-Feng SONG ; Yi-Dan TANG ; Yan-Fang JIANG ; Bing-Ling LI
Chinese Journal of Analytical Chemistry 2024;52(2):187-197
Nucleic acid-based molecular diagnostic methods are considered the gold standard for detecting infectious pathogens.However,when applied to portable or on-site rapid diagnostics,they still face various limitations and challenges,such as poor specificity,cumbersome operation,and portability difficulties.The CRISPR(Clustered regularly interspaced short palindromic repeats)/CRISPR-associated protein(Cas)-fluorescence detection method holds the potential to significantly enhance the specificity and signal-to-noise ratio of nucleic acid detection.In this study,we developed a portable grayscale reader detection system based on loop-mediated isothermal amplification(LAMP)-CRISPR/Cas.On one hand,in the presence of CRISPR RNA(crRNA),the CRISPR/Cas12a system was employed to achieve precise fluorescent detection of self-designed LAMP amplification reactions for influenza A and influenza B viruses.This further validated the high selectivity and versatility of the CRISPR/Cas system.On the other hand,the accompanying independently developed portable grayscale reader allowed for low-cost collection of fluorescence signals and high-reliability visual interpretation.At the end of the detection process,it directly provided positive or negative results.Practical sample analyses using this detection system have verified its reliability and utility,demonstrating that this system can achieve highly sensitive and highly specific portable analysis of influenza viruses.
2.Correlation of FSHR gene polymorphism,BMI and sex hormone six with the risk of polycystic ovary syndrome
Zhi-Fang ZAN ; Zeng-Rong TU ; Qi-Rong WANG ; Yu DUAN ; Jian-Bing LIU ; Li LI
Medical Journal of Chinese People's Liberation Army 2024;49(1):50-56
Objective To investigate the association between body mass index(BMI),sex hormone and single nucleotide polymorphisms(SNPs)of follicle-stimulating hormone receptor(FSHR)gene rs2268361 and rs2349415 and its correlation with the risk of polycystic ovary syndrome(PCOS).Methods Peripheral blood was collected from 213 PCOS patients and 207 healthy controls,attending the Department of Reproductive Medicine at the First Hospital of Shanxi Medical University,and 32 follicular fluids were randomly collected from each of the PCOS and control groups from March to August 2021.Calculation of BMI of the PCOS and control groups;The levels of follicle-stimulating hormone(FSH),luteinizing hormone(LH),estradiol(E2),testosterone(T),progesterone(P)and prolactin(PRL)in peripheral blood of the two groups were detected by immunochemiluminescence method.Polymerase chain reaction(PCR)and high-resolution melting curve(HRM)were used to analyze the polymorphisms of rs2268361 and rs2349415 in FSHR of the two groups.Quantitative real-time PCR was used to detect the expression of FSHR gene mRNA in peripheral blood and ovarian granulosa cells.Results There was a strong positive correlation between LH and LH/FSH(r=0.88,P<0.05);The levels of BMI,E2,LH,LH/FSH and T in PCOS group were significantly higher than those in control group(P<0.05);FSH level was significantly lower than that of control group(P<0.001).HRM analysis showed the frequencies of CC,CT and TT genotypes at rs2349415 were 55.9%,34.3%and 9.8%in PCOS group and 68.6%,23.2%and 8.2%in control group,respectively.The frequencies of C and T alleles were 73.0%and 27.0%in PCOS group and 80.2%and 19.8%in control group,respectively.There were significant differences in genotype frequencies and allele frequencies between the two groups(P<0.05);The expression level of FSHR mRNA was higher in ovarian granulosa cells in PCOS group than in control group(P=0.004),the expression level of FSHR mRNA in rs2349415 TT genotype was higher than that in CC(P=0.002)and CT(P=0.035)genotype.Conclusion High levels of BMI, LH, E2 and T allele of rs2349415 increased the risk of PCOS.
3.Cellular Temperature Imaging Technology Based on Single-molecule Quantum Coherent Modulation
Hai-Tao ZHOU ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(5):1215-1220
ObjectiveCellular temperature imaging can assist scientists in studying and comprehending the temperature distribution within cells, revealing critical information about cellular metabolism and biochemical processes. Currently, cell temperature imaging techniques based on fluorescent temperature probes suffer from limitations such as low temperature resolution and a limited measurement range. This paper aims to develop a single-cell temperature imaging and real-time monitoring technique by leveraging the temperature-dependent properties of single-molecule quantum coherence processes. MethodsUsing femtosecond pulse lasers, we prepare delayed and phase-adjustable pairs of femtosecond pulses. These modulated pulse pairs excite fluorescent single molecules labeled within cells through a microscopic system, followed by the collection and recording of the arrival time of each fluorescent photon. By defining the quantum coherence visibility (V) of single molecules in relation to the surrounding environmental temperature, a correspondence between V and environmental temperature is established. By modulating and demodulating the arrival times of fluorescent photons, we obtain the local temperature of single molecules. Combined with scanning imaging, we finally achieve temperature imaging and real-time detection of cells. ResultsThis method achieves high precision (temperature resolution<0.1°C) and a wide temperature range (10-50°C) for temperature imaging and measurement, and it enables the observation of temperature changes related to individual cell metabolism. ConclusionThis research contributes to a deeper understanding of cellular metabolism, protein function, and disease mechanisms, providing a valuable tool for biomedical research.
4.Raman Spectroscopy Analysis of The Temporal Heterogeneity in Lung Cell Carcinogenesis Induced by Benzo(a)pyrene
Hai-Tao ZHOU ; Wei YAO ; Cao-Zhe CUI ; Xiao-Tong ZHOU ; Xi-Long LIANG ; Cheng-Bing QIN ; Lian-Tuan XIAO ; Zhi-Fang WU ; Si-Jin LI
Progress in Biochemistry and Biophysics 2024;51(6):1458-1470
ObjectiveTemporal heterogeneity in lung cancer presents as fluctuations in the biological characteristics, genomic mutations, proliferation rates, and chemotherapeutic responses of tumor cells over time, posing a significant barrier to effective treatment. The complexity of this temporal variance, coupled with the spatial diversity of lung cancer, presents formidable challenges for research. This article will pave the way for new avenues in lung cancer research, aiding in a deeper understanding of the temporal heterogeneity of lung cancer, thereby enhancing the cure rate for lung cancer. MethodsRaman spectroscopy emerges as a powerful tool for real-time surveillance of biomolecular composition changes in lung cancer at the cellular scale, thus shedding light on the disease’s temporal heterogeneity. In our investigation, we harnessed Raman spectroscopic microscopy alongside multivariate statistical analysis to scrutinize the biomolecular alterations in human lung epithelial cells across various timeframes after benzo(a)pyrene exposure. ResultsOur findings indicated a temporal reduction in nucleic acids, lipids, proteins, and carotenoids, coinciding with a rise in glucose concentration. These patterns suggest that benzo(a)pyrene induces structural damage to the genetic material, accelerates lipid peroxidation, disrupts protein metabolism, curtails carotenoid production, and alters glucose metabolic pathways. Employing Raman spectroscopy enabled us to monitor the biomolecular dynamics within lung cancer cells in a real-time, non-invasive, and non-destructive manner, facilitating the elucidation of pivotal molecular features. ConclusionThis research enhances the comprehension of lung cancer progression and supports the development of personalized therapeutic approaches, which may improve the clinical outcomes for patients.
5.An Enhancer LncRNA Regulates NFE2 Expression and Proliferation in Human Leukemic K562 Cells
Yan-Fei LU ; Song-Ya QU ; Jing-Jing ZHU ; Chao LIU ; Jian WANG ; Bing-She HAN ; Jun-Fang ZHANG
Progress in Biochemistry and Biophysics 2024;51(1):190-201
ObjectiveTranscription factor NFE2 was observed abnormal expression in myeloproliferative neoplasm (MPN) patients. However, how NFE2 is transcriptionally regulated remains ambiguous. This study aims to explore the elements and molecular mechanisms involved in the transcriptional regulation of NFE2. MethodsActive enhancers were predicted by public NGS data and conformed experimentally via dual luciferase reporter assay. After that, PRO-seq and GRO-seq data was used to detect enhancer RNAs transcribed from these enhancers. RACE was utilized to clone the full length enhancer RNA (eRNA) transcripts, and RT-qPCR was used to measure their expression in different leukemia cell lines as well as the transcript levels during induced differentiation. Finally, to investigate the molecular function of the eRNA, overexpression and knockdown of the eRNA via lentivirus system was performed in K562 cells. ResultsWe identified three enhancers regulating NFE2 transcription, which located at -3.6k, -6.2k and +6.3k from NFE2 transcription start site (TSS) respectively. At the -3.6k enhancer, we cloned an eRNA transcript and characterized that as a lncRNA which was expressed and located in the nucleus in three types of leukemia cell lines. When this lncRNA was overexpressed, expression of NFE2 was upregulated and decreases of K562 cell proliferation and migration ability were observed. While knocking down of this lncRNA, the level of NFE2 decreases correspondingly and the proliferation ability of K562 cells increases accordingly. ConclusionWe identified an enhancer lncRNA that regulates NFE2 transcription positively and suppresses K562 cell proliferation.
6.Metabolomics Analysis of Tupaia belangeri Breast Tumor Model
Xi FANG ; Qingqing AO ; Chunhong LI ; Yiqiang OUYANG ; Songchao GUO ; Bing HU
Laboratory Animal and Comparative Medicine 2024;44(1):52-61
ObjectiveTo explore the metabolic changes during the development of Tupaia belangeri breast tumors, to investigate the close relationship between the changes of serum metabolic substances and the occurrence and progression of tumors, and to screen for biomarkers reflecting the progression of breast tumors. MethodsBreast tumors in Tupaia belangeri were induced by orally administering 7,12-dimethylbenzoanthracene (DMBA) three times, with a 15-day interval between each administration, along with a high-fat and high-sugar diet. The DMBA-induced breast cancer group and the DMBA-inducedwithout breast cancer group were compared with the control group. Untargeted determination of serum metabolites was performed using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS) in DMBA-induced Tupaia belangeri with breast cancer, DMBA-induced without breast cancer and the control group. Multidimensional statistical analysis including unsupervised principal component analysis (PCA), and orthogonal partial least squares analysis (OPLS-DA) were conducted. Furthermore, t-test was used for intergroup differential comparison. Differential metabolites were screened under VIP>1 and P<0.05 conditions, and significantly changing differential metabolites were identified using the HMDB online database. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was utilized to enrich metabolic-related gene regulatory pathways. ResultsThe incidence of breast tumors was 40% in DMBA-induced Tupaia belangeri. Compared with the control group, 30 metabolic differential products were detected in the serum of the group with breast cancer, with 18 down-regulated and 12 up-regulated (VIP>1, P<0.05). KEGG pathway analysis revealed significant changes in four metabolic pathways: glutamate metabolism, glyceride metabolism, citric acid cycle, and alanine metabolism. Compared with the group without breast cancer, 18 metabolic differential products were detected, with 7 down-regulated and 11 up-regulated (VIP>1, P<0.05). KEGG pathway analysis revealed significant changes in the citric acid cycle and glutamate metabolism. Compared with the control group, 31 metabolic differential products were detected in the serum of the groups without breast cancer, with 14 down-regulated and 17 up-regulated (VIP>1, P<0.05). KEGG pathway analysis revealed significant changes in three metabolic pathways: glutamate metabolism, glyceride metabolism, and citric acid cycle. ConclusionMetabolomics analysis can reveal the characteristics of changes in metabolites in the serum of breast tumors. The results suggest that glutamate metabolism, glyceride metabolism, citric acid cycle, and alanine metabolism pathways are associated with the occurrence and development of DMBA-induced breast tumors in Tupaia belangeri. It provides a foundation for further research into the biological mechanism of breast cancer.
7.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
8.Research on three-dimensional ordered porous carbon-based materials prepared from Acanthopanax senticosus traditional Chinese medicine residues and their drug loading performance
De-sheng WANG ; Jia-xin FAN ; Ri-qing CHENG ; Shi-kui WU ; Lai-bing WANG ; Jia-hao SHI ; Ting-ting CHEN ; Qin-fang HE ; Chang-jin XU ; Hui-qing GUO
Acta Pharmaceutica Sinica 2024;59(10):2857-2863
Three-dimensional ordered porous carbon materials exhibit potential application prospects as excellent drug supports in drug delivery systems due to their high specific surface area, tunable pore structure, and excellent biocompatibility. In this study, three-dimensional ordered porous carbon materials were prepared using
9.Characteristics of acute graft-versus-host disease of the intestine after unrelated cord blood transplantation
Meijuan TU ; Chunli ZHANG ; Li DENG ; Bing FANG ; Guangyu SUN ; Xiaoyu ZHU ; Xinqiong ZHANG
Chinese Journal of Tissue Engineering Research 2024;28(25):3955-3959
BACKGROUND:Despite unrelated cord blood transplantation is expected to become an important method for treating malignant hematological diseases,the manifestation and clinical characteristics of acute graft-versus-host disease in the gastrointestinal tract still require further in-depth investigation. OBJECTIVE:To analyze the clinical characteristics of intestinal acute graft-versus-host disease after unrelated cord blood transplantation. METHODS:A retrospective analysis was conducted on 668 malignant hematological disease patients after unrelated cord blood transplantation who underwent hematopoietic stem cell transplantation subspecialty in the Department of Hematology,First Affiliated Hospital of University of Science and Technology of China from December 2016 to December 2020.Among them,clinical data of 138 patients with intestinal acute graft-versus-host disease were analyzed,including 76 males and 62 females,with a median age of 13(1-62)years.All patients were treated with a myeloablative regimen(without antihuman thymocyte globulin)and cyclosporin A combined with mycophenolate mofetil to prevent graft-versus-host disease. RESULTS AND CONCLUSION:(1)The patients with intestinal acute graft-versus-host disease had diarrhea of varying degrees,most of which were yellow-green,yellow-brown watery stools or mucous stools.53 patients(38.4%)had blood stools,82 patients(57.9%)had skin involvement,18 patients(13.0%)had a secondary intestinal bacterial infection,and 90 patients(65.2%)had cytomegaloviremia.(2)The clinical characteristics of patients(70 cases,50.7%)with grade 1-2 intestinal acute graft-versus-host disease were compared with those(68 cases,49.3%)with grade 3-4 intestinal acute graft-versus-host disease.It was found that the age of grade 3-4 intestinal acute graft-versus-host disease patients was higher than that of grade 1-2 intestinal acute graft-versus-host disease patients(P<0.001),and they were complicated with cytomegaloviremia probably(P=0.035).Diarrhea lasted longer(P=0.00)and the length of hospital stay increased substantially(P<0.001).However,there were no significant differences in recipient gender,pre-transplant disease status,HLA matching,diagnosis,combined skin graft-versus-host disease,and secondary intestinal infection rate in patients of the two groups.(3)These findings conclude that the clinical characteristics of intestinal acute graft-versus-host disease after unrelated cord blood transplantation are complex,which affects the prognosis and quality of life of patients seriously and requires early identification and precise treatment.
10.Gut microbiota and immune mechanism of type 1 diabetes mellitus
Bing ZHANG ; Yuanyuan FANG ; Yuying WANG ; Huijuan YUAN
Chinese Journal of Endocrinology and Metabolism 2024;40(3):270-274
Type 1 diabetes mellitus is a T-cell-mediated autoimmune disease that commonly affects adolescents, characterized by progressive destruction of pancreatic β-cells, absolute insulin deficiency, and hyperglycemia. The pathogenesis of type 1 diabetes mellitus is complex and is believed to be mainly associated with immunity, environment, and genetics. There is increasing evidence that gut microbiota is closely related to the occurrence of type 1 diabetes mellitus. This article focuses on the immune mechanisms and roles of gut microbiota and its derivatives in the development of type 1 diabetes mellitus from the perspectives of innate and adaptive immunity. Additionally, it introduces therapeutic approaches targeting gut microbiota for the treatment of type 1 diabetes mellitus.

Result Analysis
Print
Save
E-mail