1.Mediating effect of self-efficacy on family health and health literacy among middle-aged and elderly patients with chronic diseases in rural areas
LI Yanbing ; ZHOU Shutong ; LI Yingying ; BI Shanlin ; LI Youwei
Journal of Preventive Medicine 2026;38(1):75-78,84
Objective :
To explore the mediating effect of self-efficacy on family health and health literacy among middle-aged and elderly chronic diseases patients in rural areas, so as to provide a basis for developing targeted health literacy improvement strategies.
Methods:
Based on the publicly available 2021 "Survey of Chinese Residents' Psychology and Behavior" database, rural chronic diseases patients aged >45 years were selected as the study subjects. Data on demographic information, family type, and chronic diseases comorbidities were collected. The Chinese simplified Family Health Scale, General Self-Efficacy Scale, and Health Literacy Scale were used to assess family health, self-efficacy, and health literacy, respectively. Correlation analysis was employed to explore the relationships between variables, and the 4.1 Process program was used to analyze the mediating effect of self-efficacy on family health and health literacy. The Bootstrap method was applied to test the significance of the mediating effect.
Results:
A total of 449 participants were included, of whom 241 were male (53.67%) and 208 were female (46.33%). The majority (205 cases, 45.66%) were aged 60-<76 years. There were 168 cases (37.42%) with chronic disease comorbidities. The total score for family health was (37.96±6.25) points. The self-efficacy score was (27.28±5.40) points, the health literacy index was (27.72±8.08) points, and the health literacy proficiency rate was only 14.90% (67 patierts). Mediating effect analysis showed that family health could directly and positively influence health literacy, with a direct effect value of 0.090 (95%CI: 0.001-0.179). It could also indirectly and positively influence health literacy through self-efficacy, with a mediating effect value of 0.164 (95%CI: 0.099-0.234). The mediating effect accounted for 64.31% of the total effect.
Conclusion
Self-efficacy plays a positive mediating role between family health and health literacy among middle-aged and elderly chronic diseases patients in rural areas.
2.USP20 as a super-enhancer-regulated gene drives T-ALL progression via HIF1A deubiquitination.
Ling XU ; Zimu ZHANG ; Juanjuan YU ; Tongting JI ; Jia CHENG ; Xiaodong FEI ; Xinran CHU ; Yanfang TAO ; Yan XU ; Pengju YANG ; Wenyuan LIU ; Gen LI ; Yongping ZHANG ; Yan LI ; Fenli ZHANG ; Ying YANG ; Bi ZHOU ; Yumeng WU ; Zhongling WEI ; Yanling CHEN ; Jianwei WANG ; Di WU ; Xiaolu LI ; Yang YANG ; Guanghui QIAN ; Hongli YIN ; Shuiyan WU ; Shuqi ZHANG ; Dan LIU ; Jun-Jie FAN ; Lei SHI ; Xiaodong WANG ; Shaoyan HU ; Jun LU ; Jian PAN
Acta Pharmaceutica Sinica B 2025;15(9):4751-4771
T-cell acute lymphoblastic leukemia (T-ALL) is a highly aggressive hematologic malignancy with a poor prognosis, despite advancements in treatment. Many patients struggle with relapse or refractory disease. Investigating the role of the super-enhancer (SE) regulated gene ubiquitin-specific protease 20 (USP20) in T-ALL could enhance targeted therapies and improve clinical outcomes. Analysis of histone H3 lysine 27 acetylation (H3K27ac) chromatin immunoprecipitation sequencing (ChIP-seq) data from six T-ALL cell lines and seven pediatric samples identified USP20 as an SE-regulated driver gene. Utilizing the Cancer Cell Line Encyclopedia (CCLE) and BloodSpot databases, it was found that USP20 is specifically highly expressed in T-ALL. Knocking down USP20 with short hairpin RNA (shRNA) increased apoptosis and inhibited proliferation in T-ALL cells. In vivo studies showed that USP20 knockdown reduced tumor growth and improved survival. The USP20 inhibitor GSK2643943A demonstrated similar anti-tumor effects. Mass spectrometry, RNA-Seq, and immunoprecipitation revealed that USP20 interacted with hypoxia-inducible factor 1 subunit alpha (HIF1A) and stabilized it by deubiquitination. Cleavage under targets and tagmentation (CUT&Tag) results indicated that USP20 co-localized with HIF1A, jointly modulating target genes in T-ALL. This study identifies USP20 as a therapeutic target in T-ALL and suggests GSK2643943A as a potential treatment strategy.
3.PROTAC-loaded nanocapsules degrading BRD4 for radio-chemotherapy sensitization in glioblastoma.
Yun GUO ; Mingzhu FANG ; Shilin ZHANG ; Zheng ZHOU ; Zonghua TIAN ; Haoyu YOU ; Yun CHEN ; Jingyi ZHOU ; Xiaobao YANG ; Yunke BI ; Chen JIANG ; Tao SUN
Acta Pharmaceutica Sinica B 2025;15(10):5050-5070
Glioblastoma (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis. Conventional chemo-radiotherapy demonstrates limited therapeutic efficacy and is often accompanied by significant side effects, largely due to factors such as drug resistance, radiation resistance, the presence of the blood-brain barrier (BBB), and the activation of DNA damage repair mechanisms. There is a pressing need to enhance treatment efficacy, with BRD4 identified as a promising target for increasing GBM sensitivity to therapy. Lacking small molecule inhibitors, BRD4 can be degraded using PROteolysis Targeting Chimera (PROTAC), thereby inhibiting DNA damage repair. To deliver PROTAC, SIAIS171142 (SIS) effectively, we designed a responsive nanocapsule, MPL(SS)P@SIS, featuring GBM-targeting and GSH-responsive drug release. Modified with 1-methyl-l-tryptophan (MLT), nanocapsules facilitate targeted delivery of SIS, downregulating BRD4 and sensitizing GBM cells to radiotherapy and chemotherapy. After intravenous administration, MPL(SS)P@SIS selectively accumulates in tumor tissue, enhancing the effects of radiotherapy and temozolomide (TMZ) by increasing DNA damage and oxidative stress. GSH activates the nanocapsules, triggering BRD4 degradation and hindering DNA repair. In mouse models, the nanosensitizer, combined with TMZ and X-ray irradiation, efficiently inhibited the growth of GBM. These findings demonstrate a novel PROTAC-based sensitization strategy targeting BRD4, offering a promising approach for effective GBM therapy.
4.Therapeutic role of miR-26a on cardiorenal injury in a mice model of angiotensin-II induced chronic kidney disease through inhibition of LIMS1/ILK pathway.
Weijie NI ; Yajie ZHAO ; Jinxin SHEN ; Qing YIN ; Yao WANG ; Zuolin LI ; Taotao TANG ; Yi WEN ; Yilin ZHANG ; Wei JIANG ; Liangyunzi JIANG ; Jinxuan WEI ; Weihua GAN ; Aiqing ZHANG ; Xiaoyu ZHOU ; Bin WANG ; Bi-Cheng LIU
Chinese Medical Journal 2025;138(2):193-204
BACKGROUND:
Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD.
METHODS:
We generated an microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t -test were used to analyze the data.
RESULTS:
Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes.
CONCLUSIONS
Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.
Animals
;
MicroRNAs/metabolism*
;
Angiotensin II/toxicity*
;
Mice
;
Renal Insufficiency, Chronic/chemically induced*
;
Mice, Knockout
;
Disease Models, Animal
;
Male
;
Signal Transduction/genetics*
;
LIM Domain Proteins/genetics*
;
Mice, Inbred C57BL
;
Cell Line
;
Humans
5.S100A9 as a promising therapeutic target for diabetic foot ulcers.
Renhui WAN ; Shuo FANG ; Xingxing ZHANG ; Weiyi ZHOU ; Xiaoyan BI ; Le YUAN ; Qian LV ; Yan SONG ; Wei TANG ; Yongquan SHI ; Tuo LI
Chinese Medical Journal 2025;138(8):973-981
BACKGROUND:
Diabetic foot is a complex condition with high incidence, recurrence, mortality, and disability rates. Current treatments for diabetic foot ulcers are often insufficient. This study was conducted to identify potential therapeutic targets for diabetic foot.
METHODS:
Datasets related to diabetic foot and diabetic skin were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software. Enrichment analysis was conducted to screen for critical gene functions and pathways. A protein interaction network was constructed to identify node genes corresponding to key proteins. The DEGs and node genes were overlapped to pinpoint target genes. Plasma and chronic ulcer samples from diabetic and non-diabetic individuals were collected. Western blotting, immunohistochemistry, and enzyme-linked immunosorbent assays were performed to verify the S100 calcium binding protein A9 (S100A9), inflammatory cytokine, and related pathway protein levels. Hematoxylin and eosin staining was used to measure epidermal layer thickness.
RESULTS:
In total, 283 common DEGs and 42 node genes in diabetic foot ulcers were identified. Forty-three genes were differentially expressed in the skin of diabetic and non-diabetic individuals. The overlapping of the most significant DEGs and node genes led to the identification of S100A9 as a target gene. The S100A9 level was significantly higher in diabetic than in non-diabetic plasma (178.40 ± 44.65 ng/mL vs. 40.84 ± 18.86 ng/mL) and in chronic ulcers, and the wound healing time correlated positively with the plasma S100A9 level. The levels of inflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1, and IL-6) and related pathway proteins (phospho-extracellular signal regulated kinase [ERK], phospho-p38, phospho-p65, and p-protein kinase B [Akt]) were also elevated. The epidermal layer was notably thinner in chronic diabetic ulcers than in non-diabetic skin (24.17 ± 25.60 μm vs. 412.00 ± 181.60 μm).
CONCLUSIONS
S100A9 was significantly upregulated in diabetic foot and was associated with prolonged wound healing. S100A9 may impair diabetic wound healing by disrupting local inflammatory responses and skin re-epithelialization.
Calgranulin B/therapeutic use*
;
Diabetic Foot/metabolism*
;
Humans
;
Datasets as Topic
;
Computational Biology
;
Mice, Inbred C57BL
;
Animals
;
Mice
;
Protein Interaction Maps
;
Immunohistochemistry
6.Hub biomarkers and their clinical relevance in glycometabolic disorders: A comprehensive bioinformatics and machine learning approach.
Liping XIANG ; Bing ZHOU ; Yunchen LUO ; Hanqi BI ; Yan LU ; Jian ZHOU
Chinese Medical Journal 2025;138(16):2016-2027
BACKGROUND:
Gluconeogenesis is a critical metabolic pathway for maintaining glucose homeostasis, and its dysregulation can lead to glycometabolic disorders. This study aimed to identify hub biomarkers of these disorders to provide a theoretical foundation for enhancing diagnosis and treatment.
METHODS:
Gene expression profiles from liver tissues of three well-characterized gluconeogenesis mouse models were analyzed to identify commonly differentially expressed genes (DEGs). Weighted gene co-expression network analysis (WGCNA), machine learning techniques, and diagnostic tests on transcriptome data from publicly available datasets of type 2 diabetes mellitus (T2DM) patients were employed to assess the clinical relevance of these DEGs. Subsequently, we identified hub biomarkers associated with gluconeogenesis-related glycometabolic disorders, investigated potential correlations with immune cell types, and validated expression using quantitative polymerase chain reaction in the mouse models.
RESULTS:
Only a few common DEGs were observed in gluconeogenesis-related glycometabolic disorders across different contributing factors. However, these DEGs were consistently associated with cytokine regulation and oxidative stress (OS). Enrichment analysis highlighted significant alterations in terms related to cytokines and OS. Importantly, osteomodulin ( OMD ), apolipoprotein A4 ( APOA4 ), and insulin like growth factor binding protein 6 ( IGFBP6 ) were identified with potential clinical significance in T2DM patients. These genes demonstrated robust diagnostic performance in T2DM cohorts and were positively correlated with resting dendritic cells.
CONCLUSIONS
Gluconeogenesis-related glycometabolic disorders exhibit considerable heterogeneity, yet changes in cytokine regulation and OS are universally present. OMD , APOA4 , and IGFBP6 may serve as hub biomarkers for gluconeogenesis-related glycometabolic disorders.
Machine Learning
;
Humans
;
Computational Biology/methods*
;
Biomarkers/metabolism*
;
Diabetes Mellitus, Type 2/genetics*
;
Animals
;
Mice
;
Gluconeogenesis/physiology*
;
Gene Expression Profiling
;
Transcriptome/genetics*
;
Gene Regulatory Networks/genetics*
;
Clinical Relevance
7.Diagnosis and treatment of colorectal liver metastases: Chinese expert consensus-based multidisciplinary team (2024 edition).
Wen ZHANG ; Xinyu BI ; Yongkun SUN ; Yuan TANG ; Haizhen LU ; Jun JIANG ; Haitao ZHOU ; Yue HAN ; Min YANG ; Xiao CHEN ; Zhen HUANG ; Weihua LI ; Zhiyu LI ; Yufei LU ; Kun WANG ; Xiaobo YANG ; Jianguo ZHOU ; Wenyu ZHANG ; Muxing LI ; Yefan ZHANG ; Jianjun ZHAO ; Aiping ZHOU ; Jianqiang CAI
Chinese Medical Journal 2025;138(15):1765-1768
9.Clinicopathological significance and prognostic value of serum 25-hydroxyvitamin D3 level in children with IgA vasculitis nephritis.
Pao YU ; Pei ZHANG ; Chun-Lin GAO ; Zi WANG ; Yin ZHANG ; Zheng GE ; Bi ZHOU
Chinese Journal of Contemporary Pediatrics 2025;27(1):55-61
OBJECTIVES:
To study the significance of serum 25-hydroxyvitamin D3 [25-(OH)D3] level in the clinicopathological characteristics and prognosis of children with immunoglobulin A vasculitis nephritis (IgAVN).
METHODS:
A retrospective analysis was conducted on the clinical data of children with IgAVN who underwent renal biopsy at Suzhou Hospital Affiliated to Anhui Medical University and Jinling Hospital of the Medical School of Nanjing University from June 2015 to June 2020. Based on serum 25-(OH)D3 level, the patients were divided into a normal group and a lower group. The clinicopathological characteristics and follow-up data of the two groups were collected and compared.
RESULTS:
A total of 359 children with IgAVN were included. Compared to the normal group (62 cases), the lower group (297 cases) exhibited higher incidences of hematochezia and gross hematuria, higher levels of serum creatinine, blood urea nitrogen, urinary retinol protein, urinary N-acetyl-β-D-glucosaminidase, and quantitative urinary protein, and a longer duration from renal biopsy to urinary protein becoming negative, as well as lower estimated glomerular filtration rate and albumin level (P<0.05). Renal pathology in the lower group showed a higher occurrence of tubular interstitial injury, crescent formation, segmental sclerosis in glomeruli, and inflammatory cell infiltration in the renal interstitium compared to the normal group (P<0.05). Survival analysis indicated that the cumulative renal survival rate was lower in the lower group (P<0.05). Multivariate Cox regression analysis revealed that low serum 25-(OH)D3 level is an independent risk factor for poor prognosis in children with IgAVN.
CONCLUSIONS
Children with IgAVN and low serum 25-(OH)D3 level have relatively severe clinicopathological manifestations. Low serum 25-(OH)D3 level is an independent risk factor for poor prognosis in children with IgAVN.
Humans
;
Male
;
Female
;
Child
;
Prognosis
;
Retrospective Studies
;
Calcifediol/blood*
;
Child, Preschool
;
Adolescent
;
Glomerulonephritis, IGA/mortality*
;
Vasculitis/pathology*
;
IgA Vasculitis/mortality*
10.Chain mediating role of family care and emotional management between social support and anxiety in primary school students.
Zhan-Wen LI ; Jian-Hui WEI ; Ke-Bin CHEN ; Xiao-Rui RUAN ; Yu-Ting WEN ; Cheng-Lu ZHOU ; Jia-Peng TANG ; Ting-Ting WANG ; Ya-Qing TAN ; Jia-Bi QIN
Chinese Journal of Contemporary Pediatrics 2025;27(10):1176-1184
OBJECTIVES:
To investigate the chain mediating role of family care and emotional management in the relationship between social support and anxiety among rural primary school students.
METHODS:
A questionnaire survey was conducted among students in grades 4 to 6 from four counties in Hunan Province. Data were collected using the Social Support Rating Scale, Family Care Index Scale, Emotional Intelligence Scale, and Generalized Anxiety Disorder -7. Logistic regression analysis was used to explore the influencing factors of anxiety symptoms. Mediation analysis was conducted to assess the chain mediating effects of family care and emotional management between social support and anxiety.
RESULTS:
A total of 4 141 questionnaires were distributed, with 3 874 valid responses (effective response rate: 93.55%). The prevalence rate of anxiety symptoms among these students was 9.32% (95%CI: 8.40%-10.23%). Significant differences were observed in the prevalence rates of anxiety symptoms among groups with different levels of social support, family functioning, and emotional management ability (P<0.05). The total indirect effect of social support on anxiety symptoms via family care and emotional management was significant (β=-0.137, 95%CI: -0.167 to -0.109), and the direct effect of social support on anxiety symptoms remained significant (P<0.05). Family care and emotional management served as significant chain mediators in the relationship between social support and anxiety symptoms (β=-0.025,95%CI:-0.032 to -0.018), accounting for 14.5% of the total effect.
CONCLUSIONS
Social support can directly affect anxiety symptoms among rural primary school students and can also indirectly influence anxiety symptoms through the chain mediating effects of family care and emotional management. These findings provide scientific evidence for the prevention of anxiety in primary school students from multiple perspectives.
Humans
;
Female
;
Male
;
Social Support
;
Anxiety/etiology*
;
Child
;
Students/psychology*
;
Emotions
;
Logistic Models


Result Analysis
Print
Save
E-mail