1.Relationship between Bacteria in the Lower Respiratory Tract/Lung Cancer and the Development of Lung Cancer as well as Its Clinical Application.
Bowen LI ; Zhicheng HUANG ; Yadong WANG ; Jianchao XUE ; Yankai XIA ; Yuan XU ; Huaxia YANG ; Naixin LIANG ; Shanqing LI
Chinese Journal of Lung Cancer 2024;26(12):950-956
Due to the advancement of 16S rRNA sequencing technology, the lower respiratory tract microbiota, which was considered non-existent, has been revealed. The correlation between these microorganisms and diseases such as tumor has been a hot topic in recent years. As the bacteria in the surrounding can infiltrate the tumors, researchers have also begun to pay attention to the biological behavior of tumor bacteria and their interaction with tumors. In this review, we present the characteristic of the lower respiratory tract bacteria and summarize recent research findings on the relationship between these microbiota and lung cancer. On top of that, we also summarize the basic feature of bacteria in tumors and focus on the characteristic of the bacteria in lung cancer. The relationship between bacteria in lung cancer and tumor development is also been discussed. Finally, we review the potential clinical applications of bacterial communities in the lower respiratory tract and lung cancer, and summarize key points of sample collection, sequencing, and contamination control, hoping to provide new ideas for the screening and treatment of tumors.
.
Humans
;
Lung Neoplasms
;
RNA, Ribosomal, 16S/genetics*
;
Bacteria/genetics*
;
Microbiota
;
Respiratory System
;
Lung/microbiology*
2.Nitrate reduction capacity of the oral microbiota is impaired in periodontitis: potential implications for systemic nitric oxide availability.
Bob T ROSIER ; William JOHNSTON ; Miguel CARDA-DIÉGUEZ ; Annabel SIMPSON ; Elena CABELLO-YEVES ; Krystyna PIELA ; Robert REILLY ; Alejandro ARTACHO ; Chris EASTON ; Mia BURLEIGH ; Shauna CULSHAW ; Alex MIRA
International Journal of Oral Science 2024;16(1):1-1
The reduction of nitrate to nitrite by the oral microbiota has been proposed to be important for oral health and results in nitric oxide formation that can improve cardiometabolic conditions. Studies of bacterial composition in subgingival plaque suggest that nitrate-reducing bacteria are associated with periodontal health, but the impact of periodontitis on nitrate-reducing capacity (NRC) and, therefore, nitric oxide availability has not been evaluated. The current study aimed to evaluate how periodontitis affects the NRC of the oral microbiota. First, 16S rRNA sequencing data from five different countries were analyzed, revealing that nitrate-reducing bacteria were significantly lower in subgingival plaque of periodontitis patients compared with healthy individuals (P < 0.05 in all five datasets with n = 20-82 samples per dataset). Secondly, subgingival plaque, saliva, and plasma samples were obtained from 42 periodontitis patients before and after periodontal treatment. The oral NRC was determined in vitro by incubating saliva with 8 mmol/L nitrate (a concentration found in saliva after nitrate-rich vegetable intake) and compared with the NRC of 15 healthy individuals. Salivary NRC was found to be diminished in periodontal patients before treatment (P < 0.05) but recovered to healthy levels 90 days post-treatment. Additionally, the subgingival levels of nitrate-reducing bacteria increased after treatment and correlated negatively with periodontitis-associated bacteria (P < 0.01). No significant effect of periodontal treatment on the baseline saliva and plasma nitrate and nitrite levels was found, indicating that differences in the NRC may only be revealed after nitrate intake. Our results suggest that an impaired NRC in periodontitis could limit dietary nitrate-derived nitric oxide levels, and the effect on systemic health should be explored in future studies.
Humans
;
Nitrates
;
Nitric Oxide
;
Nitrites
;
RNA, Ribosomal, 16S/genetics*
;
Periodontitis/microbiology*
;
Bacteria
;
Dental Plaque/microbiology*
;
Saliva/microbiology*
;
Microbiota/genetics*
3.Construction of a caries diagnosis model based on microbiome novelty score.
Yanfei SUN ; Jie LU ; Jiazhen YANG ; Yuhan LIU ; Lu LIU ; Fei ZENG ; Yufen NIU ; Lei DONG ; Fang YANG
West China Journal of Stomatology 2023;41(2):208-217
OBJECTIVES:
This study aimed to analyze the bacteria in dental caries and establish an optimized dental-ca-ries diagnosis model based on 16S ribosomal RNA (rRNA) data of oral flora.
METHODS:
We searched the public databa-ses of microbiomes including NCBI, MG-RAST, EMBL-EBI, and QIITA and collected data involved in the relevant research on human oral microbiomes worldwide. The samples in the caries dataset (1 703) were compared with healthy ones (20 540) by using the microbial search engine (MSE) to obtain the microbiome novelty score (MNS) and construct a caries diagnosis model based on this index. Nonparametric multivariate ANOVA was used to analyze and compare the impact of different host factors on the oral flora MNS, and the model was optimized by controlling related factors. Finally, the effect of the model was evaluated by receiver operating characteristic (ROC) curve analysis.
RESULTS:
1) The oral microbiota distribution obviously differed among people with various oral-health statuses, and the species richness and species diversity index decreased. 2) ROC curve was used to evaluate the caries data set, and the area under ROC curve was AUC=0.67. 3) Among the five hosts' factors including caries status, country, age, decayed missing filled tooth (DMFT) indices, and sampling site displayed the strongest effect on MNS of samples (P=0.001). 4) The AUC of the model was 0.87, 0.74, 0.74, and 0.75 in high caries, medium caries, low caries samples in Chinese children, and mixed dental plaque samples after controlling host factors, respectively.
CONCLUSIONS
The model based on the analysis of 16S rRNA data of oral flora had good diagnostic efficiency.
Humans
;
Child
;
Bacteria/genetics*
;
Dental Caries/microbiology*
;
Dental Caries Susceptibility
;
Microbiota/genetics*
;
RNA, Ribosomal, 16S
4.Synergistic effect of β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli in vitro.
Muchen ZHANG ; Huangwei SONG ; Zhiyu ZOU ; Siyuan YANG ; Hui LI ; Chongshan DAI ; Dejun LIU ; Bing SHAO ; Congming WU ; Jianzhong SHEN ; Yang WANG
Chinese Journal of Biotechnology 2023;39(4):1621-1632
The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.
Humans
;
Tigecycline/pharmacology*
;
Escherichia coli/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Plasmids
;
Anti-Bacterial Agents/metabolism*
;
Escherichia coli Infections/microbiology*
;
Bacteria/genetics*
;
Microbial Sensitivity Tests
5.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage
6.Application and Prospect of Nanopore Sequencing Technology in Etiological Diagnosis of Blood Stream Infection.
Wei GUO ; Shuai-Hua FAN ; Peng-Cheng DU ; Jun GUO
Acta Academiae Medicinae Sinicae 2023;45(2):317-321
Blood stream infection (BSI),a blood-borne disease caused by microorganisms such as bacteria,fungi,and viruses,can lead to bacteremia,sepsis,and infectious shock,posing a serious threat to human life and health.Identifying the pathogen is central to the precise treatment of BSI.Traditional blood culture is the gold standard for pathogen identification,while it has limitations in clinical practice due to the long time consumption,production of false negative results,etc.Nanopore sequencing,as a new generation of sequencing technology,can rapidly detect pathogens,drug resistance genes,and virulence genes for the optimization of clinical treatment.This paper reviews the current status of nanopore sequencing technology in the diagnosis of BSI.
Humans
;
Nanopore Sequencing
;
Sepsis/diagnosis*
;
Bacteremia/microbiology*
;
Bacteria
;
Blood Culture/methods*
7.Intestinal and pharyngeal microbiota in early neonates: an analysis based on high-throughput sequencing.
Xue-Juan WANG ; Zhi-Ying SHAO ; Min-Rong ZHU ; Ming-Yu YOU ; Yu-Han ZHANG ; Xiao-Qing CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(5):508-515
OBJECTIVES:
To investigate the distribution characteristics and correlation of intestinal and pharyngeal microbiota in early neonates.
METHODS:
Full-term healthy neonates who were born in Shanghai Pudong New Area Maternal and Child Health Hospital from September 2021 to January 2022 and were given mixed feeding were enrolled. The 16S rRNA sequencing technique was used to analyze the stool and pharyngeal swab samples collected on the day of birth and days 5-7 after birth, and the composition and function of intestinal and pharyngeal microbiota were analyzed and compared.
RESULTS:
The diversity analysis showed that the diversity of pharyngeal microbiota was higher than that of intestinal microbiota in early neonates, but the difference was not statistically significant (P>0.05). On the day of birth, the relative abundance of Proteobacteria in the intestine was significantly higher than that in the pharynx (P<0.05). On days 5-7 after birth, the relative abundance of Actinobacteria and Proteobacteria in the intestine was significantly higher than that in the pharynx (P<0.05), and the relative abundance of Firmicutes in the intestine was significantly lower than that in the pharynx (P<0.05). At the genus level, there was no significant difference in the composition of dominant bacteria between the intestine and the pharynx on the day of birth (P>0.05), while on days 5-7 after birth, there were significant differences in the symbiotic bacteria of Streptococcus, Staphylococcus, Rothia, Bifidobacterium, and Escherichia-Shigella between the intestine and the pharynx (P<0.05). The analysis based on the database of Clusters of Orthologous Groups of proteins showed that pharyngeal microbiota was more concentrated on chromatin structure and dynamics and cytoskeleton, while intestinal microbiota was more abundant in RNA processing and modification, energy production and conversion, amino acid transport and metabolism, carbohydrate transport and metabolism, coenzyme transport and metabolism, and others (P<0.05). The Kyoto Encyclopedia of Genes and Genomes analysis showed that compared with pharyngeal microbiota, intestinal microbiota was more predictive of cell motility, cellular processes and signal transduction, endocrine system, excretory system, immune system, metabolic diseases, nervous system, and transcription parameters (P<0.05).
CONCLUSIONS
The composition and diversity of intestinal and pharyngeal microbiota of neonates are not significantly different at birth. The microbiota of these two ecological niches begin to differentiate and gradually exhibit distinct functions over time.
Humans
;
Infant, Newborn
;
Bacteria
;
China
;
High-Throughput Nucleotide Sequencing
;
Intestines
;
Microbiota
;
Pharynx/microbiology*
;
RNA, Ribosomal, 16S/genetics*
8.Effects of rumen microorganisms on the decomposition of recycled straw residue.
Kailun SONG ; Zicheng ZHOU ; Jinhai LENG ; Songwen FANG ; Chunhuo ZHOU ; Guorong NI ; Lichun KANG ; Xin YIN
Journal of Zhejiang University. Science. B 2023;24(4):336-344
Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.
Animals
;
Rumen/metabolism*
;
Agriculture/methods*
;
Soil/chemistry*
;
Microbiota
;
Bacteria/metabolism*
;
Oryza/metabolism*
;
Soil Microbiology
;
Cellulose
9.The structure and function analysis of bacterial community during aerobic composting of chicken manure.
Yangyang ZHAO ; Yinshuang LIU ; Hongjin NIU ; Zhenhua JIA ; Zaixing LI ; Xiaobo CHEN ; Yali HUANG
Chinese Journal of Biotechnology 2023;39(3):1175-1187
In order to determine the changes of bacterial community structure and function in the early, middle and late stage of aerobic composting of chicken manure, high-throughput sequencing and bioinformatics methods were used to determine and analyze the 16S rRNA sequence of samples at different stages of composting. Wayne analysis showed that most of the bacterial OTUs in the three composting stages were the same, and only about 10% of the operational taxonomic units (OTUs) showed stage specificity. The diversity indexes including Ace, Chao1 and Simpson showed a trend of increasing at first, followed by decreasing. However, there was no significant difference among different composting stages (P < 0.05). The dominant bacteria groups in three composting stages were analyzed at the phylum and genus levels. The dominant bacteria phyla at three composting stages were the same, but the abundances were different. LEfSe (line discriminant analysis (LDA) effect size) method was used to analyze the bacterial biological markers with statistical differences among three stages of composting. From the phylum to genus level, there were 49 markers with significant differences among different groups. The markers included 12 species, 13 genera, 12 families, 8 orders, 1 boundary, and 1 phylum. The most biomarkers were detected at early stage while the least biomarkers were detected at late stage. The microbial diversity was analyzed at the functional pathway level. The function diversity was the highest in the early stage of composting. Following the composting, the microbial function was enriched relatively while the diversity decreased. This study provides theoretical support and technical guidance for the regulation of livestock manure aerobic composting process.
Animals
;
Manure/microbiology*
;
Chickens/genetics*
;
Composting
;
RNA, Ribosomal, 16S/genetics*
;
Soil
;
Bacteria/genetics*
10.Variation and interaction mechanism between active components in Rheum officinale and rhizosphere soil microorganisms under drought stress.
Feng-Pu XIE ; Nan WANG ; Jing GAO ; Gang ZHANG ; Zhong-Xing SONG ; Yuan-Yuan LI ; Ya-Li ZHANG ; Duo-Yi WANG ; Rui LI ; Mi-Mi LIU ; Zhi-Shu TANG
China Journal of Chinese Materia Medica 2023;48(6):1498-1509
To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.
Rhizosphere
;
Rheum
;
Droughts
;
Soil
;
Catechin
;
Emodin
;
Bacteria/metabolism*
;
Water/metabolism*
;
Firmicutes
;
Soil Microbiology

Result Analysis
Print
Save
E-mail