1.Knowledge Graph Enhanced Transformers for Diagnosis Generation of Chinese Medicine.
Xin-Yu WANG ; Tao YANG ; Xiao-Yuan GAO ; Kong-Fa HU
Chinese journal of integrative medicine 2024;30(3):267-276
Chinese medicine (CM) diagnosis intellectualization is one of the hotspots in the research of CM modernization. The traditional CM intelligent diagnosis models transform the CM diagnosis issues into classification issues, however, it is difficult to solve the problems such as excessive or similar categories. With the development of natural language processing techniques, text generation technique has become increasingly mature. In this study, we aimed to establish the CM diagnosis generation model by transforming the CM diagnosis issues into text generation issues. The semantic context characteristic learning capacity was enhanced referring to Bidirectional Long Short-Term Memory (BILSTM) with Transformer as the backbone network. Meanwhile, the CM diagnosis generation model Knowledge Graph Enhanced Transformer (KGET) was established by introducing the knowledge in medical field to enhance the inferential capability. The KGET model was established based on 566 CM case texts, and was compared with the classic text generation models including Long Short-Term Memory sequence-to-sequence (LSTM-seq2seq), Bidirectional and Auto-Regression Transformer (BART), and Chinese Pre-trained Unbalanced Transformer (CPT), so as to analyze the model manifestations. Finally, the ablation experiments were performed to explore the influence of the optimized part on the KGET model. The results of Bilingual Evaluation Understudy (BLEU), Recall-Oriented Understudy for Gisting Evaluation 1 (ROUGE1), ROUGE2 and Edit distance of KGET model were 45.85, 73.93, 54.59 and 7.12, respectively in this study. Compared with LSTM-seq2seq, BART and CPT models, the KGET model was higher in BLEU, ROUGE1 and ROUGE2 by 6.00-17.09, 1.65-9.39 and 0.51-17.62, respectively, and lower in Edit distance by 0.47-3.21. The ablation experiment results revealed that introduction of BILSTM model and prior knowledge could significantly increase the model performance. Additionally, the manual assessment indicated that the CM diagnosis results of the KGET model used in this study were highly consistent with the practical diagnosis results. In conclusion, text generation technology can be effectively applied to CM diagnostic modeling. It can effectively avoid the problem of poor diagnostic performance caused by excessive and similar categories in traditional CM diagnostic classification models. CM diagnostic text generation technology has broad application prospects in the future.
Humans
;
Medicine, Chinese Traditional
;
Pattern Recognition, Automated
;
Asian People
;
Language
;
Learning
2.Study on the explicitation of implicit knowledge and the construction of knowledge graph on moxibustion in medical case records of ZHOU Mei-sheng's Jiusheng.
Bing-Yuan ZHOU ; Cai-Feng ZHU ; Meng LI ; Na ZHANG ; Yu-Mei JIA ; An-Qi WU
Chinese Acupuncture & Moxibustion 2023;43(5):584-590
To explore the methods of the explicitation of implicit knowledge and the construction of knowledge graph on moxibustion in medical case records of ZHOU Mei-sheng's Jiusheng. The medical case records data of Jiusheng was collected, the frequency statistic was analyzed based on Python3.8.6, complex network analysis was performed using Gephi9.2 software, community analysis was performed by the ancient and modern medical case cloud platform V2.3.5, and analysis and verification of correlation graph and weight graph were proceed by Neo4j3.5.25 image database. The disease systems with frequency≥10 % were surgery, ophthalmology and otorhinolaryngology, locomotor, digestive and respiratory systems. The diseases under the disease system were mainly carbuncle, arthritis, lumbar disc herniation and headache. The commonly used moxibustion methods were fumigating moxibustion, blowing moxibustion, direct moxibustion and warming acupuncture. The core prescription of points obtained by complex network analysis included Yatong point, Zhiyang(GV 9), Sanyinjiao(SP 6), Dazhui(GV 14), Zusanli(ST 36), Lingtai(GV 10), Xinshu(BL 15), Zhijian point and Hegu(LI 4), which were basically consistent with high-frequency points. A total of 6 communities were obtained by community analysis, corresponding to different diseases. Through the analysis of correlation graph, 13 pairs of strong association rule points were obtained. The correlation between Zhiyang(GV 9)-Dazhui(GV 14) and Yatong point-Lingtai(GV 10) was the strongest. The acupoints with high correlation with Yatong point were Zhiyang(GV 9), Lingtai(GV 10), Dazhui(GV 14), Zusanli(ST 36) and Sanyinjiao(SP 6). In the weight graph of the high-frequency disease system, the relationship of the first weight of the surgery system disease was fumigating moxibustion-carbuncle-Yatong point, and the relationship of the first weight of the ophthalmology and otorhinolaryngology system disease was blowing moxibustion-laryngitis-Hegu (LI 4). The results of correlation graph and weight graph are consistent with the results of data mining, which can be used as an effective way to study the knowledge base of moxibustion diagnosis and treatment in the future.
Humans
;
Moxibustion
;
Carbuncle
;
Pattern Recognition, Automated
;
Acupuncture Therapy
;
Acupuncture Points
3.Current status and trend of acupuncture-moxibustion for myofascial pain syndrome: a visual analysis of knowledge graph based on CiteSpace and VOSviewer.
Yu-Lin GUO ; Ming GAO ; Hui LI ; Rong-Jie ZHOU ; Gang XU ; Wen-Chao TANG ; Jun-Ling WEN ; Shao-Xiong LI
Chinese Acupuncture & Moxibustion 2023;43(9):996-1005
Bibliometric and scientific knowledge graph methods were used to analyze the research status and hot spots of acupuncture-moxibustion in treatment of myofascial pain syndrome (MPS) and explore its development trend. The articles of both Chinese and English versions relevant to MPS treated by acupuncture-moxibustion were searched in CNKI, VIP, Wanfang, SinoMed and WOS from the database inception to March 20, 2023. Using Excel2016, CiteSpace6.2.R2 and VOSviewer1.6.18, the visual analysis was conducted by means of the cooperative network, keyword co-occurrence, keyword timeline, keyword emergence, etc. From Chinese databases and WOS database, 910 Chinese articles and 300 English articles were included, respectively. The annual publication volume showed an overall rising trend. Literature output of English articles was concentrated in Spain, China, and the United States, of which, there was less cross-regional cooperation. In the keyword analysis, regarding acupuncture-moxibustion therapy, Chinese articles focused on "acupuncture", "electroacupuncture" and "acupotomy"; while, "dry needling" and "injection" were dominated for English one. Clinical study was the current hot spot in Chinese databases, in comparison, the randomized controlled double-blind clinical trial was predominant in WOS. Both Chinese and English articles were limited in the report of mechanism research. The cooperation among research teams should be strengthened to conduct comparative research, dose-effect research and effect mechanism research with different methods of acupuncture-moxibustion involved so that the evidences can be provided for deeper exploration.
Humans
;
Moxibustion
;
Pattern Recognition, Automated
;
Acupuncture Therapy
;
Myofascial Pain Syndromes/therapy*
;
Electroacupuncture
4.Overview of the application of knowledge graphs in the medical field.
Caiyun WANG ; Zengliang ZHENG ; Xiaoqiong CAI ; Jihan HUANG ; Qianmin SU
Journal of Biomedical Engineering 2023;40(5):1040-1044
With the booming development of medical information technology and computer science, the medical services industry is gradually transiting from information technology to intelligence. The medical knowledge graph plays an important role in intelligent medical applications such as knowledge questions and answers and intelligent diagnosis, and is a key technology for promoting wise medical care and the basis for intelligent management of medical information. In order to fully exploit the great potential of knowledge graphs in the medical field, this paper focuses on five aspects: inter-drug relationship discovery, assisted diagnosis, personalized recommendation, decision support and intelligent prediction. The latest research progress on medical knowledge graphs is introduced, and relevant suggestions are made in light of the current challenges and problems faced by medical knowledge graphs to provide reference for promoting the wide application of medical knowledge graphs.
Pattern Recognition, Automated
;
Medical Informatics
5.Knowledge graph analysis of pyroptosis research in traditional Chinese medicine based on VOSviewer and CiteSpace.
Feng GAO ; Li-Jun GUO ; Hong-Wei ZHANG ; Yi-Fei WANG ; Gao-Can REN ; Xiao-Chang MA
China Journal of Chinese Materia Medica 2023;48(4):1098-1107
To explore the research hotspots and frontier directions of pyroptosis in the field of traditional Chinese medicine(TCM), the authors searched CNKI and Web of Science for literature related to pyroptosis in TCM, screened literature according to the search strategy and inclusion criteria, and analyzed the publication trend of the included literature. VOSviewer was used to draw author cooperation and keyword co-occurrence network diagrams, and CiteSpace was employed for keyword clustering, emergence, and timeline view. Finally, 507 Chinese literature and 464 English literature were included, and it was found that the number of Chinese and English literature was increasing rapidly year by year. The co-occurrence of the authors showed that in terms of Chinese literature, there was a representative research team composed of DU Guan-hua, WANG Shou-bao and FANG Lian-hua, and for English literature, the representative research team was composed of XIAO Xiao-he, BAI Zhao-fang and XU Guang. The network visualization of Chinese and English keywords revealed that inflammation, apoptosis, oxidative stress, autophagy, organ damage, fibrosis, atherosclerosis, and ischemia-reperfusion injury were the primary research diseases and pathological processes in TCM; berberine, resveratrol, puerarin, na-ringenin, astragaloside Ⅳ, and baicalin were the representative active ingredients; NLRP3/caspase-1/GSDMD, TLR4/NF-κB/NLRP3, and p38/MAPK signaling pathways were the main research pathways. Keyword clustering, emergence, and timeline analysis indicated that the pyroptosis research in TCM focused on the mechanism of TCM monomers and compounds intervening in diseases and pathological processes. Pyroptosis is a research hotspot in the area of TCM, and the current discussion mainly focuses on the mechanism of the therapeutic effect of TCM.
Pyroptosis
;
Medicine, Chinese Traditional
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Pattern Recognition, Automated
;
Apoptosis
6.A review of researches on electroencephalogram decoding algorithms in brain-computer interface.
Xiaoyu ZHOU ; Minpeng XU ; Xiaolin XIAO ; Long CHEN ; Xiaosong GU ; Dong MING
Journal of Biomedical Engineering 2019;36(5):856-861
Brain-computer interface (BCI) provides a direct communicating and controlling approach between the brain and surrounding environment, which attracts a wide range of interest in the fields of brain science and artificial intelligence. It is a core to decode the electroencephalogram (EEG) feature in the BCI system. The decoding efficiency highly depends on the feature extraction and feature classification algorithms. In this paper, we first introduce the commonly-used EEG features in the BCI system. Then we introduce the basic classical algorithms and their advanced versions used in the BCI system. Finally, we present some new BCI algorithms proposed in recent years. We hope this paper can spark fresh thinking for the research and development of high-performance BCI system.
Algorithms
;
Brain
;
physiology
;
Brain-Computer Interfaces
;
Electroencephalography
;
Humans
;
Pattern Recognition, Automated
7.Studies on the methodology for quality control in Chinese medicine manufacturing process based on knowledge graph.
Yi ZHONG ; Chen-Lei RU ; Bo-Li ZHANG ; Yi-Yu CHENG
China Journal of Chinese Materia Medica 2019;44(24):5269-5276
According to the requirements for developing the quality control technology in Chinese medicine( CM) manufacturing process and the practical scenarios in applying a new generation of artificial intelligence to CM industry,we present a method of constructing the knowledge graph( KG) for CM manufacture to solve key problems about quality control in CM manufacturing process.Based on the above,a " pharmaceutical industry brain" model for CM manufacture has been established. Further,we propose founding the KG-based methodology for quality control in CM manufacturing process,and briefly describe the design method,system architecture and main functions of the KG system. In this work,the KG for manufacturing Shuxuening Injection( SXNI) was developed as a demonstration study. The KG version 1. 0 platform for intelligent manufacturing SXNI has been built,which could realize technology leap of the quality control system in CM manufacturing process from perceptual intelligence to cognitive intelligence.
Artificial Intelligence
;
Drug Industry/standards*
;
Drugs, Chinese Herbal/standards*
;
Medicine, Chinese Traditional/standards*
;
Pattern Recognition, Automated
;
Quality Control
;
Technology, Pharmaceutical
8.Temporal Segmentation for Capturing Snapshots of Patient Histories in Korean Clinical Narrative.
Healthcare Informatics Research 2018;24(3):179-186
OBJECTIVES: Clinical discharge summaries provide valuable information about patients' clinical history, which is helpful for the realization of intelligent healthcare applications. The documents tend to take the form of separate segments based on temporal or topical information. If a patient's clinical history can be seen as a consecutive sequence of clinical events, then each temporal segment can be seen as a snapshot, providing a certain clinical context at a specific moment. This study aimed to demonstrate a temporal segmentation method of Korean clinical narratives for identifying textual snapshots of patient history as a proof-of-a-concept. METHODS: Our method uses pattern-based segmentation to approximate human recognition of the temporal or topical shifts in clinical documents. We utilized rheumatic patients' discharge summaries and transformed them into sequences of constituent chunks. We built 97 single pattern functions to denote whether a certain chunk has attributes that indicate that it can be a segment boundary. We manually defined the relationships between the pattern functions to resolve multiple pattern matchings and to make a final decision. RESULTS: The algorithm segmented 30 discharge summaries and processed 1,849 decision points. Three human judges were asked whether they agreed with the algorithm's prediction, and the agreement percentage on the judges' majority opinion was 89.61%. CONCLUSIONS: Although this method is based on manually constructed rules, our findings demonstrate that the proposed algorithm can achieve fairly good segmentation results, and it may be the basis for methodological improvement in the future.
Delivery of Health Care
;
Electronic Health Records
;
Humans
;
Methods
;
Natural Language Processing
;
Pattern Recognition, Automated
;
Rheumatic Diseases
9.Maturation Disparity between Hand-Wrist Bones in a Chinese Sample of Normal Children: An Analysis Based on Automatic BoneXpert and Manual Greulich and Pyle Atlas Assessment.
Ji ZHANG ; Fangqin LIN ; Xiaoyi DING
Korean Journal of Radiology 2016;17(3):435-442
OBJECTIVE: To assess the maturation disparity of hand-wrist bones using the BoneXpert system and Greulich and Pyle (GP) atlas in a sample of normal children from China. MATERIALS AND METHODS: Our study included 229 boys and 168 girls aged 2-14 years. The bones in the hand and wrist were divided into five groups: distal radius and ulna, metacarpals, proximal phalanges, middle phalanges and distal phalanges. Bone age (BA) was assessed separately using the automatic BoneXpert and GP atlas by two raters. Differences in the BA between the most advanced and retarded individual bones and bone groups were analyzed. RESULTS: In 75.8% of children assessed with the BoneXpert and 59.4% of children assessed with the GP atlas, the BA difference between the most advanced and most retarded individual bones exceeded 2.0 years. The BA mean differences between the most advanced and most retarded individual bones were 2.58 and 2.25 years for the BoneXpert and GP atlas methods, respectively. Furthermore, for both methods, the middle phalanges were the most advanced group. The most retarded group was metacarpals for BoneXpert, while metacarpals and the distal radius and ulna were the most retarded groups according to the GP atlas. Overall, the BAs of the proximal and distal phalanges were closer to the chronological ages than those of the other bone groups. CONCLUSION: Obvious and regular maturation disparities are common in normal children. Overall, the BAs of the proximal and distal phalanges are more useful for BA estimation than those of the other bone groups.
Age Determination by Skeleton
;
Asian Continental Ancestry Group*
;
Bone and Bones
;
Child*
;
China
;
Developmental Disabilities
;
Female
;
Hand
;
Humans
;
Metacarpal Bones
;
Pattern Recognition, Automated
;
Radiography
;
Radius
;
Ulna
;
Wrist
10.Application and Exploration of Big Data Mining in Clinical Medicine.
Yue ZHANG ; Shu-Li GUO ; Li-Na HAN ; Tie-Ling LI
Chinese Medical Journal 2016;129(6):731-738
OBJECTIVETo review theories and technologies of big data mining and their application in clinical medicine.
DATA SOURCESLiteratures published in English or Chinese regarding theories and technologies of big data mining and the concrete applications of data mining technology in clinical medicine were obtained from PubMed and Chinese Hospital Knowledge Database from 1975 to 2015.
STUDY SELECTIONOriginal articles regarding big data mining theory/technology and big data mining's application in the medical field were selected.
RESULTSThis review characterized the basic theories and technologies of big data mining including fuzzy theory, rough set theory, cloud theory, Dempster-Shafer theory, artificial neural network, genetic algorithm, inductive learning theory, Bayesian network, decision tree, pattern recognition, high-performance computing, and statistical analysis. The application of big data mining in clinical medicine was analyzed in the fields of disease risk assessment, clinical decision support, prediction of disease development, guidance of rational use of drugs, medical management, and evidence-based medicine.
CONCLUSIONBig data mining has the potential to play an important role in clinical medicine.
Bayes Theorem ; Clinical Medicine ; Data Mining ; Decision Support Systems, Clinical ; Decision Trees ; Evidence-Based Medicine ; Fuzzy Logic ; Humans ; Neural Networks (Computer) ; Pattern Recognition, Automated

Result Analysis
Print
Save
E-mail