1.Preparation and immunogenicity evaluation of mRNA vaccine against porcine epidemic diarrhea.
Limin YANG ; Junhong WANG ; Mingguo XU ; Hu WANG ; Xiaojuan ZHANG ; Wenjun LIU ; Chuangfu CHEN
Chinese Journal of Biotechnology 2023;39(7):2624-2633
Porcine epidemic diarrhea (PED) is a highly contagious disease that causes high mortality in suckling piglets. Although several licensed inactivated and live attenuated vaccines were widely used, the infection rate remains high due to unsatisfactory protective efficacy. In this study, mRNA vaccine candidates against PED were prepared, and their immunogenicity was evaluated in mice and pregnant sows. The mRNA PED vaccine based on heterodimer of viral receptor binding region (RBD) showed good immunogenicity. It elicited robust humoral and cellular immune responses in mice, and the neutralizing antibody titer reached 1:300 after a single vaccination. Furthermore, it induced neutralizing antibody level similar to that of the inactivated vaccine in pregnant sows. This study developed a new design of PED vaccine based on the mRNA-RBD strategy and demonstrated the potential for clinical application.
Pregnancy
;
Swine
;
Animals
;
Female
;
Mice
;
Antibodies, Viral
;
Swine Diseases/epidemiology*
;
Viral Vaccines/genetics*
;
Antibodies, Neutralizing
;
Vaccines, Attenuated
;
Diarrhea/veterinary*
2.Research Progress in Antibody Responses Against SARS-CoV-2 Variants of Concern.
Acta Academiae Medicinae Sinicae 2023;45(3):454-463
So far,the coronavirus disease 2019(COVID-19)has been persisting for nearly three years,infecting about 700 million people and causing more than 6 million deaths,which has seriously affected the human society.According to Global Initiative on Sharing All Influenza Data,there are more than 12 million SARS-CoV-2 variants,of which the five major variants of concern are Alpha,Beta,Gamma,Delta and Omicron.Their infectivity,pathogencity,and neutralization resistance have changed greatly compared with the original strain,which has brought great pressure to the prevention and control of the pandemic.Antibody level testing is critical for confirming infection,epidemiological investigation,vaccine development,and neutralizing drug preparation.Focusing on the humoral immunity against SARS-CoV-2,this paper introduces the mutation sites,neutralization resistance,and vaccination efficacy of the five variants of concern,and briefly summarizes the evolutionary characteristics,future mutation directions,and host immunity.
Humans
;
SARS-CoV-2/genetics*
;
Antibody Formation
;
COVID-19
;
Gamma Rays
;
Antibodies, Neutralizing
;
Antibodies, Viral
3.Epidemiological characteristics and serum antibody detection of a COVID-19 aggregated outbreak in vaccinated population.
Zhen Yong REN ; Hai Ying GONG ; Dan XIN ; Li ZHANG ; Shuang LI ; Xin ZHANG ; Meng CHEN ; Xing Huo PANG
Chinese Journal of Preventive Medicine 2023;57(5):728-731
An epidemiological investigation was conducted on a cluster epidemic of COVID-19 in the vaccinated population in Beijing in 2022, and serum samples were collected from 21 infected cases and 61 close contacts (including 20 cases with positive nucleic acid in the isolation observation period). The results of antibody detection showed that the IgM antibody of two infected persons was positive, and the IgG antibody positive rates of patients who were converted, not converted to positive and infected persons were 36.84% (7/19), 63.41% (26/41) and 71.43% (15/21), respectively. About 98.78% of patients had been vaccinated with the SARS-CoV-2 inactivated vaccine. The positive rate of IgG antibody in patients immunized with three doses of vaccine was 86.00% (43/50), which was higher than that in patients with one or two doses [16.12% (5/31)]. The antibody level of M (Q1, Q3) in patients immunized with three doses was 4.255 (2.303, 7.0375), which was higher than that in patients with one or two doses [0.500 (0.500, 0.500)] (all P values<0.001). The antibody level of patients who were vaccinated less than three months [7.335 (1.909, 7.858)] was higher than that of patients vaccinated more than three months after the last vaccination [2.125 (0.500, 4.418)] (P=0.007). The positive rate and level of IgG antibody in patients who were converted to positive after three doses were 77.78% (7/9) and 4.207 (2.216, 7.099), respectively, which were higher than those in patients who were converted after one or two doses [0 and 0.500 (0.500, 0.500)] (all P values<0.05).
Humans
;
COVID-19
;
SARS-CoV-2
;
Disease Outbreaks
;
COVID-19 Vaccines
;
Immunoglobulin G
;
Antibodies, Viral
4.Safety and immunogenicity of freeze-dried rabies vaccine (Vero-cells) for human use in healthy people aged 9-65 years.
Li Li HUANG ; Zhi Qiang XIE ; Wei ZHANG ; Ke ZHANG ; Yan Xia WANG ; Ze Qian WANG ; Xiao Jing WU ; Dong Mei LIU
Chinese Journal of Preventive Medicine 2023;57(2):222-228
Objective: To assess the safety and immunogenicity of freeze-dried rabies vaccine (Vero-cells) for human use on different immunization procedures in healthy people aged 9-65 years. Methods: A randomized, blind, positive-controlled clinical study was conducted in March 2015. The eligible residents aged 9-65 were recruited in Dengfeng city and Biyang County, Henan Province. A total of 1 956 subjects were enrolled. The subjects were randomly (1∶1∶1) assigned to 5-dose control group, 4-dose trial group and 5-dose trial group, with 652 subjects in each group. The subjects of 5-dose control group were immunized with control vaccine on days 0, 3, 7, 14 and 28. The subjects of 4-dose trial group were immunized with trial vaccine on days 0, 7 and 21 (2-1-1 phases) and the subjects of 5-dose trial group were immunized with trial vaccine on days 0, 3, 7, 14 and 28. A combination of regular follow-up and active reporting was used to observe local and systemic adverse reactions till 30 days after the first and full immunization, and the incidence rate of adverse reactions in three groups was analyzed and compared. The venous blood was collected before the first immunization, 7 days after the first immunization, 14 days after the first immunization and 14 days after the full immunization. The neutralizing antibody of rabies virus was detected by rapid fluorescent focus inhibition test (RFFIT), and the seropositive conversion rate and geometric mean concentration (GMC) of antibody were calculated. Results: The adverse reaction rates in 5-dose control group, 4-dose trial group and 5-dose trial group were 41.87% (273/652), 35.43% (231/652) and 34.97% (228/652), respectively. The adverse reaction rates of 4-dose trial group and 5-dose trial group were lower than those of the 5-dose control group (P<0.05). The local reactions were mainly pain, itching, swelling and redness in injection site, while the systemic reactions were mainly fever, fatigue, headache and muscle pain. The severity of adverse reactions was mainly mild (level 1), accounting for 85.33% (518/607), 89.02% (373/419) and 88.96% (427/480) of the total number of adverse reactions in each group. At 14 days after the first immunization and 14 days after the full immunization, the antibody positive conversion rates of three groups were all 100%. At 7 days, 14 days after the first immunization and 14 days after the full immunization, the GMCs of three groups were 0.60, 0.72, 0.59 IU/ml, 20.42, 23.99, 24.38 IU/ml and 22.95, 23.52, 24.72 IU/ml, respectively, with no significant difference (P>0.05). Conclusion: The freeze-dried rabies vaccine (Vero-cells) for human use has good safety and immunogenicity when inoculated according to 5-dose and 4-dose immunization procedures.
Humans
;
Rabies Vaccines
;
Antibodies, Viral
;
Antibodies, Neutralizing
;
Rabies virus
;
Vaccination
;
Rabies/prevention & control*
5.Consideration on the usage of full-dose influenza vaccine for the infants aged 6-35 months old.
Chinese Journal of Preventive Medicine 2023;57(2):281-285
Seasonal influenza has a high disease burden, and children infected with influenza are prone to multiple complications. Influenza vaccination is effective in preventing infection and reducing risks of severe diseases and complications. Influenza vaccines are trivalent and quadrivalent, depending on the components of the vaccine. According to the hemagglutinin content, it can be divided into full dose and half dose of influenza vaccine for children. The findings from clinical trials and real-world studies suggested, the full-dose influenza vaccine as in adults has the same safety profile and higher immunogenicity in children aged 6 to 35 months. The application of full-dose influenza vaccine in children aged 6 to 35 months can greatly improve the flexibility and convenience of vaccination, and help reduce the workload in the process.
Child
;
Adult
;
Infant
;
Humans
;
Child, Preschool
;
Influenza Vaccines
;
Influenza, Human/prevention & control*
;
Vaccination
;
Vaccines, Inactivated
;
Antibodies, Viral
6.Clinical efficacy and long-term immunogenicity of an early triple dose regimen of SARS-CoV-2 mRNA vaccination in cancer patients.
Matilda Xinwei LEE ; Siyu PENG ; Ainsley Ryan Yan Bin LEE ; Shi Yin WONG ; Ryan Yong Kiat TAY ; Jiaqi LI ; Areeba TARIQ ; Claire Xin Yi GOH ; Ying Kiat TAN ; Benjamin Kye Jyn TAN ; Chong Boon TEO ; Esther CHAN ; Melissa OOI ; Wee Joo CHNG ; Cheng Ean CHEE ; Carol L F HO ; Robert John WALSH ; Maggie WONG ; Yan SU ; Lezhava ALEXANDER ; Sunil Kumar SETHI ; Shaun Shi Yan TAN ; Yiong Huak CHAN ; Kelvin Bryan TAN ; Soo Chin LEE ; Louis Yi Ann CHAI ; Raghav SUNDAR
Annals of the Academy of Medicine, Singapore 2023;52(1):8-16
INTRODUCTION:
Three doses of SARS-CoV-2 mRNA vaccines have been recommended for cancer patients to reduce the risk of severe disease. Anti-neoplastic treatment, such as chemotherapy, may affect long-term vaccine immunogenicity.
METHOD:
Patients with solid or haematological cancer were recruited from 2 hospitals between July 2021 and March 2022. Humoral response was evaluated using GenScript cPASS surrogate virus neutralisation assays. Clinical outcomes were obtained from medical records and national mandatory-reporting databases.
RESULTS:
A total of 273 patients were recruited, with 40 having haematological malignancies and the rest solid tumours. Among the participants, 204 (74.7%) were receiving active cancer therapy, including 98 (35.9%) undergoing systemic chemotherapy and the rest targeted therapy or immunotherapy. All patients were seronegative at baseline. Seroconversion rates after receiving 1, 2 and 3 doses of SARS-CoV-2 mRNA vaccination were 35.2%, 79.4% and 92.4%, respectively. After 3 doses, patients on active treatment for haematological malignancies had lower antibodies (57.3%±46.2) when compared to patients on immunotherapy (94.1%±9.56, P<0.05) and chemotherapy (92.8%±18.1, P<0.05). SARS-CoV-2 infection was reported in 77 (28.2%) patients, of which 18 were severe. No patient receiving a third dose within 90 days of the second dose experienced severe infection.
CONCLUSION
This study demonstrates the benefit of early administration of the third dose among cancer patients.
Humans
;
SARS-CoV-2
;
COVID-19/prevention & control*
;
Treatment Outcome
;
Neoplasms/drug therapy*
;
Hematologic Neoplasms
;
Vaccination
;
RNA, Messenger
;
Antibodies, Viral
;
Immunogenicity, Vaccine
7.Immunogenicity and reactogenicity of heterologous immunization schedules with COVID-19 vaccines: a systematic review and network meta-analysis.
Pei LI ; Weiwei WANG ; Yiming TAO ; Xiaoyu TAN ; Yujing LI ; Yinjun MAO ; Le GAO ; Lei FENG ; Siyan ZHAN ; Feng SUN
Chinese Medical Journal 2023;136(1):24-33
BACKGROUND:
Data on the immunogenicity and safety of heterologous immunization schedules are inconsistent. This study aimed to evaluate the immunogenicity and safety of homologous and heterologous immunization schedules.
METHODS:
Multiple databases with relevant studies were searched with an end date of October 31, 2021, and a website including a series of Coronavirus disease 2019 studies was examined for studies before March 31, 2022. Randomized controlled trials (RCTs) that compared different heterologous and homologous regimens among adults that reported immunogenicity and safety outcomes were reviewed. Primary outcomes included neutralizing antibodies against the original strain and serious adverse events (SAEs). A network meta-analysis (NMA) was conducted using a random-effects model.
RESULTS:
In all, 11 RCTs were included in the systematic review, and nine were ultimately included in the NMA. Among participants who received two doses of CoronaVac, another dose of mRNA or a non-replicating viral vector vaccine resulted in a significantly higher level of neutralizing antibody than a third CoronaVac 600 sino unit (SU); a dose of BNT162b2 induced the highest geometric mean ratio (GMR) of 15.24, 95% confidence interval [CI]: 9.53-24.39. Following one dose of BNT162b2 vaccination, a dose of mRNA-1273 generated a significantly higher level of neutralizing antibody than BNT162b2 alone (GMR = 1.32; 95% CI: 1.06-1.64), NVX-CoV2373 (GMR = 1.60; 95% CI: 1.16-2.21), or ChAdOx1 (GMR = 1.80; 95% CI: 1.25-2.59). Following one dose of ChAdOx1, a dose of mRNA-1273 was also more effective for improving antibody levels than ChAdOx1 (GMR = 11.09; 95% CI: 8.36-14.71) or NVX-CoV2373 (GMR = 2.87; 95% CI: 1.08-3.91). No significant difference in the risk for SAEs was found in any comparisons.
CONCLUSIONS:
Relative to vaccination with two doses of CoronaVac, a dose of BNT162b2 as a booster substantially enhances immunogenicity reactions and has a relatively acceptable risk for SAEs relative to other vaccines. For primary vaccination, schedules including mRNA vaccines induce a greater immune response. However, the comparatively higher risk for local and systemic adverse events introduced by mRNA vaccines should be noted.
REGISTRATION
PROSPERO; https://www.crd.york.ac.uk/PROSPERO/ ; No. CRD42021278149.
Adult
;
Humans
;
BNT162 Vaccine
;
2019-nCoV Vaccine mRNA-1273
;
Network Meta-Analysis
;
Immunization Schedule
;
COVID-19/prevention & control*
;
COVID-19 Vaccines/adverse effects*
;
Viral Vaccines
;
mRNA Vaccines
;
Antibodies, Neutralizing
;
Antibodies, Viral
8.Single-dose AAV-based vaccine induces a high level of neutralizing antibodies against SARS-CoV-2 in rhesus macaques.
Dali TONG ; Mei ZHANG ; Yunru YANG ; Han XIA ; Haiyang TONG ; Huajun ZHANG ; Weihong ZENG ; Muziying LIU ; Yan WU ; Huan MA ; Xue HU ; Weiyong LIU ; Yuan CAI ; Yanfeng YAO ; Yichuan YAO ; Kunpeng LIU ; Shifang SHAN ; Yajuan LI ; Ge GAO ; Weiwei GUO ; Yun PENG ; Shaohong CHEN ; Juhong RAO ; Jiaxuan ZHAO ; Juan MIN ; Qingjun ZHU ; Yanmin ZHENG ; Lianxin LIU ; Chao SHAN ; Kai ZHONG ; Zilong QIU ; Tengchuan JIN ; Sandra CHIU ; Zhiming YUAN ; Tian XUE
Protein & Cell 2023;14(1):69-73
9.Serosurvey for SARS-CoV-2 among blood donors in Wuhan, China from September to December 2019.
Le CHANG ; Lei ZHAO ; Yan XIAO ; Tingting XU ; Lan CHEN ; Yan CAI ; Xiaojing DONG ; Conghui WANG ; Xia XIAO ; Lili REN ; Lunan WANG
Protein & Cell 2023;14(1):28-36
The emerging of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused COVID-19 pandemic. The first case of COVID-19 was reported at early December in 2019 in Wuhan City, China. To examine specific antibodies against SARS-CoV-2 in biological samples before December 2019 would give clues when the epidemic of SARS-CoV-2 might start to circulate in populations. We obtained all 88,517 plasmas from 76,844 blood donors in Wuhan between 1 September and 31 December 2019. We first evaluated the pan-immunoglobin (pan-Ig) against SARS-CoV-2 in 43,850 samples from 32,484 blood donors with suitable sample quality and enough volume. Two hundred and sixty-four samples from 213 donors were pan-Ig reactive, then further tested IgG and IgM, and validated by neutralizing antibodies against SARS-CoV-2. Two hundred and thirteen samples (from 175 donors) were only pan-Ig reactive, 8 (from 4 donors) were pan-Ig and IgG reactive, and 43 (from 34 donors) were pan-Ig and IgM reactive. Microneutralization assay showed all negative results. In addition, 213 screened reactive donors were analyzed and did not show obviously temporal or regional tendency, but the distribution of age showed a difference compared with all tested donors. Then we reviewed SARS-CoV-2 antibody results from these donors who donated several times from September 2019 to June 2020, partly tested in a previous published study, no one was found a significant increase in S/CO of antibodies against SARS-CoV-2. Our findings showed no SARS-CoV-2-specific antibodies existing among blood donors in Wuhan, China before 2020, indicating no evidence of transmission of COVID-19 before December 2019 in Wuhan, China.
Humans
;
Antibodies, Viral
;
Blood Donors
;
China/epidemiology*
;
COVID-19/immunology*
;
Immunoglobulin G
;
Immunoglobulin M
;
Pandemics
;
SARS-CoV-2
10.A core epitope targeting antibody of SARS-CoV-2.
Simeng ZHAO ; Fengjiang LIU ; Shizhen QIU ; Qiaoshuai LAN ; Yiran WU ; Wei XU ; Junzi KE ; Jie YANG ; Xiaoyan LIU ; Kun WANG ; Hangtian GUO ; Shuai XIA ; Fangfang ZHANG ; Jiabei WANG ; Xiaowen HU ; Lu LU ; Shibo JIANG ; Suwen ZHAO ; Lianxin LIU ; Youhua XIE ; Xiuna YANG ; Haopeng WANG ; Guisheng ZHONG
Protein & Cell 2023;14(1):74-78

Result Analysis
Print
Save
E-mail