1.Protective Effects of Danmu Extract Syrup on Acute Lung Injury Induced by Lipopolysaccharide in Mice through Endothelial Barrier Repair.
Han XU ; Si-Cong XU ; Li-Yan LI ; Yu-Huang WU ; Yin-Feng TAN ; Long CHEN ; Pei LIU ; Chang-Fu LIANG ; Xiao-Ning HE ; Yong-Hui LI
Chinese journal of integrative medicine 2024;30(3):243-250
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effects of Danmu Extract Syrup (DMS) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice and explore the mechanism.
		                        		
		                        			METHODS:
		                        			Seventy-two male Balb/C mice were randomly divided into 6 groups according to a random number table (n=12), including control (normal saline), LPS (5 mg/kg), LPS+DMS 2.5 mL/kg, LPS+DMS 5 mL/kg, LPS+DMS 10 mL/kg, and LPS+Dexamethasone (DXM, 5 mg/kg) groups. After pretreatment with DMS and DXM, the ALI mice model was induced by LPS, and the bronchoalveolar lavage fluid (BALF) were collected to determine protein concentration, cell counts and inflammatory cytokines. The lung tissues of mice were stained with hematoxylin-eosin, and the wet/dry weight ratio (W/D) of lung tissue was calculated. The levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1 β in BALF of mice were detected by enzyme linked immunosorbent assay. The expression levels of Claudin-5, vascular endothelial (VE)-cadherin, vascular endothelial growth factor (VEGF), phospho-protein kinase B (p-Akt) and Akt were detected by Western blot analysis.
		                        		
		                        			RESULTS:
		                        			DMS pre-treatment significantly ameliorated lung histopathological changes. Compared with the LPS group, the W/D ratio and protein contents in BALF were obviously reduced after DMS pretreatment (P<0.05 or P<0.01). The number of cells in BALF and myeloperoxidase (MPO) activity decreased significantly after DMS pretreatment (P<0.05 or P<0.01). DMS pre-treatment decreased the levels of TNF-α, IL-6 and IL-1 β (P<0.01). Meanwhile, DMS activated the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway and reversed the expressions of Claudin-5, VE-cadherin and VEGF (P<0.01).
		                        		
		                        			CONCLUSIONS
		                        			DMS attenuated LPS-induced ALI in mice through repairing endothelial barrier. It might be a potential therapeutic drug for LPS-induced lung injury.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Interleukin-1beta/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Claudin-5/metabolism*
		                        			;
		                        		
		                        			Acute Lung Injury/chemically induced*
		                        			;
		                        		
		                        			Lung/pathology*
		                        			;
		                        		
		                        			Interleukin-6/metabolism*
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			
		                        		
		                        	
2.Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner.
Jinghui LEI ; Xiaoyu JIANG ; Daoyuan HUANG ; Ying JING ; Shanshan YANG ; Lingling GENG ; Yupeng YAN ; Fangshuo ZHENG ; Fang CHENG ; Weiqi ZHANG ; Juan Carlos Izpisua BELMONTE ; Guang-Hui LIU ; Si WANG ; Jing QU
Protein & Cell 2024;15(1):36-51
		                        		
		                        			
		                        			Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			;
		                        		
		                        			Endothelial Cells/metabolism*
		                        			;
		                        		
		                        			Transcription Factors/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Hypoxia/metabolism*
		                        			;
		                        		
		                        			Cell Hypoxia/physiology*
		                        			
		                        		
		                        	
3.Aging parameters of the accelerated aging procedure through D-Galactose induction
Ronald Winardi Kartika ; Kris Herawan Timotius ; Veronika Maria Sidharta ; Tena Djuartina ; Cynthia Retna Sartika
Acta Medica Philippina 2024;58(Early Access 2024):1-6
		                        		
		                        			Background and Objectives:
		                        			Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models. A low dose of long-term use and a high dose of short-term use of D-gal can induce natural aging in mice, like brain, cardiac, liver, renal, and skin aging, and erectile dysfunction. Our research aims to determine whether a high dose of short-term use of D-gal. i.p. in rats can induce natural aging and affect the following parameters: body weight (BW), Superoxide Dismutase (SOD), Vascular endothelial growth factor (VEGF), C-reactive protein (CRP), and myostatin.
		                        		
		                        			Methods:
		                        			A daily D-gal i.p. dose of 300 mg/ml/kg for seven days was carried out to induce aging parameters in the rats. After seven days, the body and gastrocnemius circumference of the rats were weighed, and biochemical analysis for SOD, VEGF, CRP, and myostatin in the blood plasma was done.
		                        		
		                        			Results:
		                        			The data obtained were analyzed using nonparametric statistics Friedman test and Mann-Whitney test. After the seven day-intervention, both the control (NaCl 0.9% i.p.) and the high dose of short-term use of D-gal i.p. groups showed no significant difference in the body weight and gastrocnemius circumference. However, D-gal administration could increase the blood plasma level of SOD, VEGF, CRP, and myostatin.
		                        		
		                        			Conclusion
		                        			We conclude that a high dose of short-term intraperitoneal D-galactose can be administrated to induce aging in rat models. The SOD, VEGF, CRP and myostatin can be used as aging parameters.
		                        		
		                        		
		                        		
		                        			Aging
		                        			;
		                        		
		                        			 Galactose
		                        			;
		                        		
		                        			 Myostatin
		                        			;
		                        		
		                        			 Vascular Endothelial Growth Factor A
		                        			
		                        		
		                        	
4.Aging parameters of the accelerated aging procedure through D-Galactose induction
Ronald Winardi Kartika ; Kris Herawan Timotius ; Veronika Maria Sidharta ; Tena Djuartina ; Cynthia Retna Sartika
Acta Medica Philippina 2024;58(23):104-109
		                        		
		                        			Background and Objectives:
		                        			Intraperitoneal injection (i.p.) of D-galactose (D-gal) accelerates aging and develops aging models. A low dose of long-term use and a high dose of short-term use of D-gal can induce natural aging in mice, like brain, cardiac, liver, renal, and skin aging, and erectile dysfunction. Our research aims to determine whether a high dose of short-term use of D-gal. i.p. in rats can induce natural aging and affect the following parameters: body weight (BW), Superoxide Dismutase (SOD), Vascular endothelial growth factor (VEGF), C-reactive protein (CRP), and myostatin.
		                        		
		                        			Methods:
		                        			A daily D-gal i.p. dose of 300 mg/ml/kg for seven days was carried out to induce aging parameters in the rats. After seven days, the body and gastrocnemius circumference of the rats were weighed, and biochemical analysis for SOD, VEGF, CRP, and myostatin in the blood plasma was done.
		                        		
		                        			Results:
		                        			The data obtained were analyzed using nonparametric statistics Friedman test and Mann-Whitney test. After the seven day-intervention, both the control (NaCl 0.9% i.p.) and the high dose of short-term use of D-gal i.p. groups showed no significant difference in the body weight and gastrocnemius circumference. However, D-gal administration could increase the blood plasma level of SOD, VEGF, CRP, and myostatin.
		                        		
		                        			Conclusion
		                        			We conclude that a high dose of short-term intraperitoneal D-galactose can be administrated to induce aging in rat models. The SOD, VEGF, CRP and myostatin can be used as aging parameters.
		                        		
		                        		
		                        		
		                        			Aging
		                        			;
		                        		
		                        			D-Galactose
		                        			;
		                        		
		                        			Galactose
		                        			;
		                        		
		                        			Myostatin
		                        			;
		                        		
		                        			VEGF
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			
		                        		
		                        	
5.Effect of tumor-stromal fibroblasts on the biological behavior of salivary gland pleomorphic adenoma cells in vitro.
Yali HOU ; Hexiang LI ; Peng SONG ; Yanxiao YANG ; Yali HAO ; Huijuan LIU
West China Journal of Stomatology 2023;41(2):149-156
		                        		
		                        			OBJECTIVES:
		                        			This study aims to investigate the effects of tumor-stromal fibroblasts (TSFs) on the proliferation, invasion, and migration of salivary gland pleomorphic adenoma (SPA) cells in vitro.
		                        		
		                        			METHODS:
		                        			Salivary gland pleomorphic adenoma cells (SPACs), TSFs, and peri-tumorous normal fibroblasts (NFs) were obtained by tissue primary culture and identified by immunocytochemical staining. The conditioned medium was obtained from TSF and NF in logarithmic phase. SPACs were cultured by conditioned medium and treated by TSF (group TSF-SPAC) and NF (group NF-SPAC). SPACs were used as the control group. The proliferation, invasion, and migration of the three groups of cells were detected by MTT, transwell, and scratch assays, respectively. The expression of vascular endothelial growth factor (VEGF) in the three groups was tested by enzyme linked immunosorbent assay (ELISA).
		                        		
		                        			RESULTS:
		                        			Immunocytochemical staining showed positive vimentin expression in NF and TSF. Results also indicated the weak positive expression of α-smooth muscle actin (SMA) and fibroblast activation protein (FAP) in TSFs and the negative expression of α-SMA and FAP in NFs. MTT assay showed that cell proliferation in the TSF-SPAC group was significantly different from that in the NF-SPAC and SPAC groups (P<0.05). Cell proliferation was not different between the NF-SPAC and SPAC groups (P>0.05). Transwell and scratch assays showed no difference in cell invasion and migration among the groups (P>0.05). ELISA showed that no significant difference in VEGF expression among the three groups (P>0.05).
		                        		
		                        			CONCLUSIONS
		                        			TSFs may be involved in SPA biological behavior by promoting the proliferation of SPACs but has no effect on the invasion and migration of SPACs in vitro. Hence, TSF may be a new therapeutic target in SPA treatment.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Adenoma, Pleomorphic/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			Culture Media, Conditioned/metabolism*
		                        			;
		                        		
		                        			Fibroblasts/metabolism*
		                        			;
		                        		
		                        			Salivary Glands/metabolism*
		                        			
		                        		
		                        	
6.Molecular mechanism of ginsenoside Rg_1 against radiation enteritis: based on network pharmacology and in vitro experiment.
Yu-Guo WANG ; Yong-Qi DOU ; Zi-Qiao YAN ; Yue GAO
China Journal of Chinese Materia Medica 2023;48(10):2810-2819
		                        		
		                        			
		                        			Via network pharmacology, molecular docking, and cellular experiment, this study explored and validated the potential molecular mechanism of ginsenoside Rg_1(Rg_1) against radiation enteritis. Targets of Rg_1 and radiation enteritis were retrieved from BATMAN-TCM, SwissTargetPrediction, and GeneCards. Cytoscape 3.7.2 and STRING were employed for the construction of protein-protein interaction(PPI) network for the common targets, and screening of core targets. DAVID was used for Gene Ontology(GO) term and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment to predict the possible mechanism, followed by molecular docking of Rg_1 with core targets and cellular experiment. For the cellular experiment, ~(60)Co-γ irradiation was performed for mo-deling of IEC-6 cells, which were then treated with Rg_1, protein kinase B(AKT) inhibitor LY294002, and other drugs to verify the effect and mechanism of Rg_1. The results showed that 29 potential targets of Rg_1, 4 941 disease targets, and 25 common targets were screened out. According to the PPI network, the core targets were AKT1, vascular endothelial growth factor A(VEGFA), heat shock protein 90 alpha family class A member 1(HSP90AA1), Bcl-2-like protein 1(BCL2L1), estrogen receptor 1(ESR1), etc. The common targets were mainly involved in the GO terms such as positive regulation of RNA polymerase Ⅱ promoter transcription, signal transduction, positive regulation of cell proliferation, and other biological processes. The top 10 KEGG pathways included phosphoinositide 3-kinase(PI3K)/AKT pathway, RAS pathway, mitogen-activated protein kinase(MAPK) pathway, Ras-proximate-1(RAP1) pathway, and calcium pathway, etc. Molecular docking showed that Rg_1 had high binding affinity to AKT1, VEGFA, HSP90AA1, and other core targets. Cellular experiment indicated that Rg_1 can effectively improve cell viability and survival, decrease apoptosis after irradiation, promote the expression of AKT1 and B-cell lymphoma-extra large(BCL-XL), and inhibit the expression of the pro-apoptotic protein Bcl-2-associated X protein(BAX). In conclusion, through network pharmacology, molecular docking, and cellular experiment, this study verified the ability of Rg_1 to reduce radiation enteritis injury. The mechanism was that it regulated PI3K/AKT pathway, thereby suppressing apoptosis.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/genetics*
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Ginsenosides/pharmacology*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/genetics*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Radiation Injuries
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/pharmacology*
		                        			
		                        		
		                        	
7.Research advances in role of angiogenesis in diabetic ulcer and traditional Chinese medicine intervention.
Tao LIU ; Xiao-Tao WEI ; Zhi-Jun HE ; Jin-Peng LI ; Yuan SONG ; Jie CHEN ; Hai-Gang WANG ; Yuan-Xu HE ; Wei-Wei WANG
China Journal of Chinese Materia Medica 2023;48(7):1731-1738
		                        		
		                        			
		                        			Diabetic ulcer(DU) is one of the common complications of diabetes often occurring in the peripheral blood vessels of lower limbs or feet with a certain degree of damage. It has high morbidity and mortality, a long treatment cycle, and high cost. DU is often clinically manifested as skin ulcers or infections in the lower limbs or feet. In severe cases, it can ulcerate to the surface of tendons, bones or joint capsules, and even bone marrow. Without timely and correct treatment, most of the patients will have ulceration and blackening of the extremities. These patients will not be able to preserve the affected limbs through conservative treatment, and amputation must be performed. The etiology and pathogenesis of DU patients with the above condition are complex, which involves blood circulation interruption of DU wound, poor nutrition supply, and failure in discharge of metabolic waste. Relevant studies have also confirmed that promoting DU wound angiogenesis and restoring blood supply can effectively delay the occurrence and development of wound ulcers and provide nutritional support for wound healing, which is of great significance in the treatment of DU. There are many factors related to angiogenesis, including pro-angiogenic factors and anti-angiogenic factors. The dynamic balance between them plays a key role in angiogenesis. Meanwhile, previous studies have also confirmed that traditional Chinese medicine can enhance pro-angiogenic factors and down-regulate anti-angiogenic factors to promote angiogenesis. In addition, many experts and scholars have proposed that traditional Chinese medicine regulation of DU wound angiogenesis in the treatment of DU has broad prospects. Therefore, by consulting a large number of studies available, this paper expounded on the role of angiogenesis in DU wound and summarized the research advance in traditional Chinese medicine intervention in promoting the expression of angiogenic factors [vascular endothelial growth factor(VEGF), fibroblast growth factor(FGF), and angiopoietin(Ang)] which played a major role in promoting wound angiogenesis in the treatment of DU to provide ideas for further research and new methods for clinical treatment of DU.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			Ulcer
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			;
		                        		
		                        			Diabetes Complications/drug therapy*
		                        			;
		                        		
		                        			Wound Healing/physiology*
		                        			;
		                        		
		                        			Diabetes Mellitus
		                        			
		                        		
		                        	
8.Effect of diosgenin on mTOR/FASN/HIF-1α/VEGFA expression in rats with non-alcoholic fatty liver disease.
Guo-Liang YIN ; Hong-Yi LIANG ; Peng-Peng LIANG ; Ya-Nan FENG ; Su-Wen CHEN ; Xiang-Yi LIU ; Wen-Chao PAN ; Feng-Xia ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1760-1769
		                        		
		                        			
		                        			The present study aimed to investigate the effect of diosgenin on mammalian target of rapamycin(mTOR), fatty acid synthase(FASN), hypoxia inducible factor-1α(HIF-1α), and vascular endothelial growth factor A(VEGFA) expression in liver tissues of rats with non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin on lipogenesis and inflammation in NAFLD. Forty male SD rats were divided into a normal group(n=8) fed on the normal diet and an experimental group(n=32) fed on the high-fat diet(HFD) for the induction of the NAFLD model. After modeling, the rats in the experimental group were randomly divided into an HFD group, a low-dose diosgenin group(150 mg·kg~(-1)·d~(-1)), a high-dose diosgenin group(300 mg·kg~(-1)·d~(-1)), and a simvastatin group(4 mg·kg~(-1)·d~(-1)), with eight rats in each group. The drugs were continuously given by gavage for eight weeks. The levels of triglyceride(TG), total cholesterol(TC), low-density lipoprotein cholesterol(LDL-C), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were detected by the biochemical method. The content of TG and TC in the liver was detected by the enzyme method. Enzyme-linked immunosorbent assay(ELISA) was used to measure interleukin 1β(IL-1β) and tumor necrosis factor α(TNF-α) in the serum. Lipid accumulation in the liver was detected by oil red O staining. Pathological changes of liver tissues were detected by hematoxylin-eosin(HE) staining. The mRNA and protein expression levels of mTOR, FASN, HIF-1α, and VEGFA in the liver of rats were detected by real-time fluorescence-based quantitative polymerase chain reaction(PCR) and Western blot, respectively. Compared with the normal group, the HFD group showed elevated body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.01), increased lipid accumulation in the liver(P<0.01), obvious liver steatosis, up-regulated mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.01), and increased protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). Compared with the HFD group, the groups with drug treatment showed lowered body weight and levels of TG, TC, LDL-C, ALT, AST, IL-1β, and TNF-α(P<0.05, P<0.01), reduced lipid accumulation in the liver(P<0.01), improved liver steatosis, decreased mRNA expression levels of mTOR, FASN, HIF-1α, and VEGFA(P<0.05, P<0.01), and declining protein expression levels of p-mTOR, FASN, HIF-1α, and VEGFA(P<0.01). The therapeutic effect of the high-dose diosgenin group was superior to that of the low-dose diosgenin group and the simvastatin group. Diosgenin may reduce liver lipid synthesis and inflammation and potentiate by down-regulating the mTOR, FASN, HIF-1α, and VEGFA expression, playing an active role in preventing and treating NAFLD.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Non-alcoholic Fatty Liver Disease/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A/metabolism*
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha/metabolism*
		                        			;
		                        		
		                        			Cholesterol, LDL
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Liver
		                        			;
		                        		
		                        			Inflammation/metabolism*
		                        			;
		                        		
		                        			Diet, High-Fat/adverse effects*
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/metabolism*
		                        			;
		                        		
		                        			Body Weight
		                        			;
		                        		
		                        			Mammals
		                        			
		                        		
		                        	
9.Mechanism of tonifying kidney and activating blood therapy for premature ovarian failure:a review.
Kun MA ; Jia-Ni LI ; Xiao-di FAN ; Han ZHANG ; Lin-Na MA
China Journal of Chinese Materia Medica 2023;48(7):1808-1814
		                        		
		                        			
		                        			Healthy birth and child development are the prerequisite for improving the overall quality of the population. However, premature ovarian failure(POF) threatens the reproductive health of women. The incidence of this disease has been on the rise, and it tends to occur in the young. The causes are complex, involving genetics, autoimmune, infectious and iatrogenic factors, but most of the causes remain unclear. At the moment, hormone replacement therapy and assisted reproductive technology are the main clinical approaches. According to traditional Chinese medicine(TCM), kidney deficiency and blood stasis are one of the major causes of POF, and TCM with the effects of tonifying kidney and activating blood has a definite effect. Through clinical trials, TCM prescriptions for POF have excellent therapeutic effect as a result of multi-target regulation and slight toxicity. In particular, they have no obvious side effects. A large number of studies have shown that the kidney-tonifying and blood-activating TCM can regulate the neuroendocrine function of hypothalamic-pituitary-ovarian axis, improve ovarian hemodynamics and microcirculation, reduce the apoptosis of granulosa cells, alleviate oxidative stress injury, and modulate immunologic balance. The mechanism is that it regulates the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt), vascular endothelial growth factor(VEGF), transforming growth factor(TGF)-β/Smads, nuclear factor E2-related factor 2(Nrf2)/antioxidant response element(ARE), and nuclear factor-kappa B(NF-κB) signaling pathways. This article summarized the pathological mechanisms of tonifying kidney and activating blood TCM in the prevention and treatment of POF and explored the biological basis of its multi-pathway and multi-target characteristics in the treatment of this disease. As a result, this study is expected to serve as a reference for the treatment of POF with the tonifying kidney and activating blood therapy.
		                        		
		                        		
		                        		
		                        			Child
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Primary Ovarian Insufficiency/drug therapy*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			Medicine, Chinese Traditional
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			Kidney
		                        			
		                        		
		                        	
10.Mechanism of Xuebijing Injection in treatment of sepsis-associated ARDS based on network pharmacology and in vitro experiment.
Wei-Chao DING ; Juan CHEN ; Hao-Yu LIAO ; Jing FENG ; Jing WANG ; Yu-Hao ZHANG ; Xiao-Hang JI ; Qian CHEN ; Xin-Yao WU ; Zhao-Rui SUN ; Shi-Nan NIE
China Journal of Chinese Materia Medica 2023;48(12):3345-3359
		                        		
		                        			
		                        			The aim of this study was to investigate the effect and molecular mechanism of Xuebijing Injection in the treatment of sepsis-associated acute respiratory distress syndrome(ARDS) based on network pharmacology and in vitro experiment. The active components of Xuebijing Injection were screened and the targets were predicted by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP). The targets of sepsis-associated ARDS were searched against GeneCards, DisGeNet, OMIM, and TTD. Weishengxin platform was used to map the targets of the main active components in Xuebijing Injection and the targets of sepsis-associated ARDS, and Venn diagram was established to identify the common targets. Cytoscape 3.9.1 was used to build the "drug-active components-common targets-disease" network. The common targets were imported into STRING for the building of the protein-protein interaction(PPI) network, which was then imported into Cytoscape 3.9.1 for visualization. DAVID 6.8 was used for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment of the common targets, and then Weishe-ngxin platform was used for visualization of the enrichment results. The top 20 KEGG signaling pathways were selected and imported into Cytoscape 3.9.1 to establish the KEGG network. Finally, molecular docking and in vitro cell experiment were performed to verify the prediction results. A total of 115 active components and 217 targets of Xuebijing Injection and 360 targets of sepsis-associated ARDS were obtained, among which 63 common targets were shared by Xuebijing Injection and the disease. The core targets included interleukin-1 beta(IL-1β), IL-6, albumin(ALB), serine/threonine-protein kinase(AKT1), and vascular endothelial growth factor A(VEGFA). A total of 453 GO terms were annotated, including 361 terms of biological processes(BP), 33 terms of cellular components(CC), and 59 terms of molecular functions(MF). The terms mainly involved cellular response to lipopolysaccharide, negative regulation of apoptotic process, lipopolysaccharide-mediated signaling pathway, positive regulation of transcription from RNA polyme-rase Ⅱ promoter, response to hypoxia, and inflammatory response. The KEGG enrichment revealed 85 pathways. After diseases and generalized pathways were eliminated, hypoxia-inducible factor-1(HIF-1), tumor necrosis factor(TNF), nuclear factor-kappa B(NF-κB), Toll-like receptor, and NOD-like receptor signaling pathways were screened out. Molecular docking showed that the main active components of Xuebijing Injection had good binding activity with the core targets. The in vitro experiment confirmed that Xuebijing Injection suppressed the HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways, inhibited cell apoptosis and reactive oxygen species generation, and down-regulated the expression of TNF-α, IL-1β, and IL-6 in cells. In conclusion, Xuebijing Injection can regulate apoptosis and response to inflammation and oxidative stress by acting on HIF-1, TNF, NF-κB, Toll-like receptor, and NOD-like receptor signaling pathways to treat sepsis-associated ARDS.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Network Pharmacology
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			;
		                        		
		                        			NF-kappa B
		                        			;
		                        		
		                        			Interleukin-6
		                        			;
		                        		
		                        			Lipopolysaccharides
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Respiratory Distress Syndrome
		                        			;
		                        		
		                        			Tumor Necrosis Factor-alpha
		                        			;
		                        		
		                        			Sepsis/genetics*
		                        			;
		                        		
		                        			NLR Proteins
		                        			
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail