1.Single-copy Loss of Rho Guanine Nucleotide Exchange Factor 10 ( arhgef10) Causes Locomotor Abnormalities in Zebrafish Larvae.
Yi ZHANG ; Ming Xing AN ; Chen GONG ; Yang Yang LI ; Yu Tong WANG ; Meng LIN ; Rong LI ; Chan TIAN
Biomedical and Environmental Sciences 2022;35(1):35-44
OBJECTIVE:
To determine if ARHGEF10 has a haploinsufficient effect and provide evidence to evaluate the severity, if any, during prenatal consultation.
METHODS:
Zebrafish was used as a model for generating mutant. The pattern of arhgef10 expression in the early stages of zebrafish development was observed using whole-mount in situ hybridization (WISH). CRISPR/Cas9 was applied to generate a zebrafish model with a single-copy or homozygous arhgef10 deletion. Activity and light/dark tests were performed in arhgef10 -/-, arhgef10 +/-, and wild-type zebrafish larvae. ARHGEF10 was knocked down using small interferon RNA (siRNA) in the SH-SY5Y cell line, and cell proliferation and apoptosis were determined using the CCK-8 assay and Annexin V/PI staining, respectively.
RESULTS:
WISH showed that during zebrafish embryonic development arhgef10 was expressed in the midbrain and hindbrain at 36-72 h post-fertilization (hpf) and in the hemopoietic system at 36-48 hpf. The zebrafish larvae with single-copy and homozygous arhgef10 deletions had lower exercise capacity and poorer responses to environmental changes compared to wild-type zebrafish larvae. Moreover, arhgef10 -/- zebrafish had more severe symptoms than arhgef10 +/- zebrafish. Knockdown of ARHGEF10 in human neuroblastoma cells led to decreased cell proliferation and increased cell apoptosis.
CONCLUSION
Based on our findings, ARHGEF10 appeared to have a haploinsufficiency effect.
Animals
;
Annexin A5
;
Apoptosis
;
Blotting, Western
;
CRISPR-Associated Protein 9
;
CRISPR-Cas Systems
;
Cell Line
;
Cell Proliferation
;
Cells, Cultured
;
Flow Cytometry
;
Genotype
;
Humans
;
In Situ Hybridization
;
Larva/physiology*
;
Phenotype
;
RNA/isolation & purification*
;
Real-Time Polymerase Chain Reaction/standards*
;
Rho Guanine Nucleotide Exchange Factors/metabolism*
;
Sincalide/analysis*
;
Spectrophotometry/methods*
;
Zebrafish/physiology*
2.A Simple and Nonenzymatic Method to Isolate Human Corpus Cavernosum Endothelial Cells and Pericytes for the Study of Erectile Dysfunction
Guo Nan YIN ; Jiyeon OCK ; Min Ji CHOI ; Kang Moon SONG ; Kalyan GHATAK ; Nguyen Nhat MINH ; Mi Hye KWON ; Do Hwan SEONG ; Hai Rong JIN ; Ji Kan RYU ; Jun Kyu SUH
The World Journal of Men's Health 2020;38(1):123-131
METHODS: For primary human cavernous EC culture, cavernous tissues were implanted into Matrigel in dishes. For primary human cavernous pericyte culture, cavernous tissues were settled by gravity into dishes. We performed immunocytochemistry and Western blot to determine phenotype and morphologic changes from passage 1 to 5. The primary cultured cells were exposed to a normal-glucose (5 mmol/L) or a high-glucose (30 mmol/L) condition, and then tube formation assay was done.RESULTS: We successfully isolated high-purity EC and pericytes from human corpus cavernosum tissue. Primary cultured EC showed highly positive staining for von Willebrand factor, and pericyte revealed positive staining for NG2 and platelet-derived growth factor receptor-β. Primary cultured EC and pericytes maintained their cellular characteristics up to passage 2 or 3. However, we observed significant changes in their typical phenotype from the passage 4 and morphological characteristics from the passage 3. Human cavernous EC or pericytes formed well-organized capillary-like structures in normal-glucose condition, whereas severely impaired tube formation was detected in high-glucose condition.CONCLUSIONS: This study provides a simple and nonenzymatic method for primary culture of human cavernous EC and pericytes. Our study will aid us to understand the pathophysiology of diabetic erectile dysfunction, and also be a valuable tool for determining the efficacy of candidate therapeutic targets.]]>
Blotting, Western
;
Cells, Cultured
;
Diabetes Mellitus
;
Endothelial Cells
;
Erectile Dysfunction
;
Gravitation
;
Humans
;
Immunohistochemistry
;
Male
;
Methods
;
Pericytes
;
Phenotype
;
Platelet-Derived Growth Factor
;
von Willebrand Factor
3.Hyperbaric oxygen improves functional recovery of rats after spinal cord injury via activating stromal cell-derived factor-1/CXC chemokine receptor 4 axis and promoting brain-derived neurothrophic factor expression.
Xiang-Long MENG ; Yong HAI ; Xi-Nuo ZHANG ; Yun-Sheng WANG ; Xue-Hua LIU ; Lin-Lin MA ; Rong YUE ; Gang XU ; Zhuo LI
Chinese Medical Journal 2019;132(6):699-706
BACKGROUND:
Spinal cord injury (SCI) is a worldwide medical concern. This study aimed to elucidate the mechanism underlying the protective effect of hyperbaric oxygen (HBO) against SCI-induced neurologic defects in rats via exploring the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis and expression of brain-derived neurotrophic factor (BDNF).
METHODS:
An acute SCI rat model was established in Sprague-Dawley rats using the Allen method. Sixty rats were divided into four groups (n = 15 in each group): sham-operated, SCI, SCI treated with HBO (SCI + HBO), and SCI treated with both HBO and AMD3100 (an antagonist of CXCR4; SCI + HBO + AMD) groups. The rats were treated with HBO twice a day for 3 days and thereafter once a day after the surgery for up to 28 days. Following the surgery, neurologic assessments were performed with the Basso-Bettie-Bresnahan (BBB) scoring system on postoperative day (POD) 7, 14, 21, and 28. Spinal cord tissues were harvested to assess the expression of SDF-1, CXCR4, and BDNF at mRNA and protein levels, using quantitative real-time polymerase chain reaction, Western blot analysis, and histopathologic analysis.
RESULTS:
HBO treatment recovered SCI-induced descent of BBB scores on POD 14, (1.25 ± 0.75 vs. 1.03 ± 0.66, P < 0.05), 21 (5.27 ± 0.89 vs. 2.56 ± 1.24, P < 0.05), and 28 (11.35 ± 0.56 vs. 4.23 ± 1.20, P < 0.05) compared with the SCI group. Significant differences were found in the mRNA levels of SDF-1 (mRNA: day 21, SCI + HBO vs. SCI + HBO + AMD, 2.89 ± 1.60 vs. 1.56 ± 0.98, P < 0.05), CXCR4 (mRNA: day 7, SCI + HBO vs. SCI, 2.99 ± 1.60 vs.1.31 ± 0.98, P < 0.05; day 14, SCI + HBO vs. SCI + HBO + AMD, 4.18 ± 1.60 vs. 0.80 ± 0.34, P < 0.05; day 21, SCI + HBO vs. SCI, 2.10 ± 1.01 vs.1.15 ± 0.03, P < 0.05), and BDNF (mRNA: day 7, SCI + HBO vs. SCI, 3.04 ± 0.41 vs. 2.75 ± 0.31, P < 0.05; day 14, SCI + HBO vs. SCI, 3.88 ± 1.59 vs. 1.11 ± 0.40, P < 0.05), indicating the involvement of SDF-1/CXCR4 axis in the protective effect of HBO.
CONCLUSIONS
HBO might promote the recovery of neurologic function after SCI in rats via activating the SDF-1/CXCR4 axis and promoting BDNF expression.
Animals
;
Blotting, Western
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Disease Models, Animal
;
Hyperbaric Oxygenation
;
methods
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, CXCR4
;
metabolism
;
Receptors, Interleukin-8A
;
metabolism
;
Spinal Cord Injuries
;
metabolism
;
therapy
4.Family with Sequence Similarity 83 Member H Promotes the Viability and Metastasis of Cervical Cancer Cells and Indicates a Poor Prognosis
Chao CHEN ; Hua Feng LI ; Yu Jie HU ; Meng Jie JIANG ; Qing Sheng LIU ; Jia ZHOU
Yonsei Medical Journal 2019;60(7):611-618
PURPOSE: Family with sequence similarity 83 member H (FAM83H) plays key roles in tumorigenesis. However, the specific roles of FAM83H in cervical cancer (CC) have not been well studied. MATERIALS AND METHODS: The RNA-seq data of 306 CC tissues and three normal samples downloaded from The Cancer Genome Atlas were used to analyze the expression of FAM83H. The Kaplan-Meier method was used to draw survival curves. Associations between FAM83H expression and clinicopathological factors were analyzed by chi-square test. Cox proportional hazards model was used to analyze prognostic factors. Loss-of-function assays were conducted to discover the biological functions of FAM83H in cell proliferation, colony formation, invasion, and migration. Real-time Quantitative Reverse Transcription PCR (qRT-PCR) and Western blotting were used to measure the expression levels of FAM83H in CC cell lines. RESULTS: Our results demonstrated that FAM83H is overexpressed in CC tissues and that high FAM83H expression is associated with worse overall survival (OS). High FAM83H expression in CC was associated with clinical stage, pathologic tumor, and pathologic node. Univariate analysis suggested that FAM83H expression was significantly related to the OS of CC patients. Although multivariate analysis showed that FAM83H expression was not an independent prognostic factor for the OS of CC patients, the effects of FAM83H on CC cell growth and motility was significant. Loss-of-function experiments demonstrated that knockdown of FAM83H inhibited proliferation, colony formation, migration, and invasion of CC cells by inactivating PI3K/AKT pathway. CONCLUSION: FAM83H might play a crucial role in CC progression and could act as a novel therapeutic target in CC.
Blotting, Western
;
Carcinogenesis
;
Cell Line
;
Cell Proliferation
;
Genome
;
Humans
;
Methods
;
Multivariate Analysis
;
Neoplasm Metastasis
;
Polymerase Chain Reaction
;
Prognosis
;
Proportional Hazards Models
;
Reverse Transcription
;
Uterine Cervical Neoplasms
5.A Novel Effect of Lipids Extracted from Vernix Caseosa on Regulation of Filaggrin Expression in Human Epidermal Keratinocytes
Wu QIAO ; Tinghan JIA ; Hongjian GU ; Ruihua GUO ; Ken KAKU ; Wenhui WU
Annals of Dermatology 2019;31(6):611-620
BACKGROUND: Vernix caseosa (VC), which is known as a unique human substance, is a biofilm that covers the skin of most human newborns. VC has many biological functions including anti-infective, skin cleansing and skin barrier repair. OBJECTIVE: In the study, we purpose to investigate the novel effect of lipids extracted from VC on the regulation of filaggrin (FLG) expression and anti-inflammation in normal human epidermal keratinocyte (NHEK) cells. METHODS: The lipids were extracted by chloroform/methanol (Folch method) and the major properties of fatty acid methyl esters were determined with gas chromatography-mass spectrometer. The relative viability of NHEK cells was evaluated by Cell Counting Kit 8 assay. The related expression of skin barrier protein was accessed with real-time quantitative polymerase chain reaction, Western blot and Immunofluorescence in NHEK cells with or without poly (I:C). Meanwhile, the changes of thymic stromal lymphopoietin (TSLP) and tumor necrosis factor alpha (TNF-α) are analyzed by enzyme-linked immunosorbent assay. RESULTS: VC lipids mostly contained saturated and branched chains fatty acids. The expression of mRNA and protein of FLG were significantly increased after the supplement with lipid in NHEK cells. Meanwhile, lipids reversed the inhibition of poly (I:C) on FLG. Moreover, lipids suppressed the over secretion of TSLP and TNF-α induced by poly (I:C). CONCLUSION: These results indicate that lipids extracted from VC has positive effects on the expression of FLG and anti-inflammation, suggesting that lipids of VC may be used for a reference for novel therapeutic method in reducing and remedying skin disease like atopic disease.
Biofilms
;
Blotting, Western
;
Cell Count
;
Enzyme-Linked Immunosorbent Assay
;
Esters
;
Fatty Acids
;
Fluorescent Antibody Technique
;
Humans
;
Infant, Newborn
;
Inflammation
;
Keratinocytes
;
Methods
;
Polymerase Chain Reaction
;
RNA, Messenger
;
Skin
;
Skin Diseases
;
Tumor Necrosis Factor-alpha
;
Vernix Caseosa
6.Bifidobacterium infantis Induces Protective Colonic PD-L1 and Foxp3 Regulatory T Cells in an Acute Murine Experimental Model of Inflammatory Bowel Disease
Linyan ZHOU ; Dongyan LIU ; Ying XIE ; Xinjie YAO ; Yan LI
Gut and Liver 2019;13(4):430-439
BACKGROUND/AIMS: The current study aims to investigate the protective effects of Bifidobacterium infantis on the abnormal immune response to inflammatory bowel disease (IBD) in dextran sodium sulfate (DSS)-induced colitis. METHODS: Eight-week-old BALB/c mice were separated into five groups at random (control, DSS, DSS+B9 [B. infantis 1×10⁹ CFU], DSS+B8 [B. infantis 1×10⁸ CFU], and DSS+B7 [B. infantis 1×10⁷ CFU]). Colitis was induced by 5% DSS ad libitum for 7 days, at which time we assessed weight, the disease activity index (DAI) score, and the histological damage score. The nuclear transcription factor Foxp3 (a marker of Treg cells), cytokines interleukin-10 (IL-10) and transforming growth factor β1 (TGF-β1), and related proteins (programmed cell death ligand 1 [PD-L1] and programmed cell death 1 [PD-1]) were detected by an immunohistochemical method and Western blot. RESULTS: B. infantis increased weight, decreased DAI scores and histological damage scores, increased the protein expression of Foxp3 (p<0.05) and cytokines IL-10 and TGF-β1 in mouse colon tissue (p<0.05), and increased the expression of PD-L1 in the treatment groups relative to that in the DSS group (p<0.05). The effect of B. infantis on Foxp3 and PD-L1 was dose dependent in the treatment groups (p<0.05). PD-L1 was positively correlated with Foxp3, IL-10, and TGF-β1. CONCLUSIONS: In a mouse model of IBD, B. infantis can alleviate intestinal epithelial injury and maintain intestinal immune tolerance and thus may have potential therapeutic value for the treatment of immune damage in IBD.
Animals
;
Bifidobacterium
;
Blotting, Western
;
Cell Death
;
Colitis
;
Colon
;
Cytokines
;
Dextrans
;
Immune Tolerance
;
Inflammatory Bowel Diseases
;
Interleukin-10
;
Methods
;
Mice
;
Models, Theoretical
;
Sodium
;
T-Lymphocytes, Regulatory
;
Transcription Factors
;
Transforming Growth Factors
7.Effects of TGF-β1 Overexpression on Biological Characteristics of Human Dental Pulp-derived Mesenchymal Stromal Cells
Hasan SALKIN ; Zeynep Burçin GÖNEN ; Ergül ERGEN ; Dilek BAHAR ; Mustafa ÇETIN
International Journal of Stem Cells 2019;12(1):170-182
OBJECTIVE: The aim of our study was to investigate the effect of Transforming growth factor beta-1 (TGF-β1) gene therapy on the surface markers, multilineage differentiation, viability, apoptosis, cell cycle, DNA damage and senescence of human Dental Pulp-derived Mesenchymal Stromal Cells (hDPSC). METHODS: hDPSCs were isolated from human teeth, and were cultured with 20% Fetal Bovine Serum (FBS) in minimum essential media-alpha (α-MEM). TGF-β1 gene transfer into hDPSCs was performed by electroporation method after the plasmid was prepared. The transfection efficiency was achieved by using western blot and flow cytometry analyses and GFP transfection. Mesenchymal stem cell (MSC) markers, multilineage differentiation, cell proliferation, apoptosis, cell cycle, DNA damage and cellular senescence assays were performed by comparing the transfected and non-transfected cells. Statistical analyses were performed using GraphPad Prism. RESULTS: Strong expression of TGF-β1 in pCMV-TGF-β1-transfected hDPSCs was detected in flow cytometry analysis. TGF-β1 transfection efficiency was measured as 95%. Western blot analysis showed that TGF-β1 protein levels increased at third and sixth days in pCMV-TGF-β1-transfected hDPSCs. The continuous TGF-β1 overexpression in hDPSCs did not influence the immunophenotype and surface marker expression of MSCs. Our results showed that TGF-β1 increased osteogenic and chondrogenic differentiation, but decreased adipogenic differentiation. Overexpression of TGF-β1 increased the proliferation rate and decreased total apoptosis in hDPSCs (p<0.05). The number of cells at “S” phase was higher with TGF-β1 transfection (p<0.05). Cellular senescence decreased in TGF-β1 transfected group (p<0.05). CONCLUSIONS: These results reflect that TGF-β1 has major impact on MSC differentiation. TGF-β1 transfection has positive effect on proliferation, cell cycle, and prevents cellular senescence and apoptosis.
Aging
;
Apoptosis
;
Blotting, Western
;
Cell Aging
;
Cell Cycle
;
Cell Differentiation
;
Cell Proliferation
;
DNA Damage
;
Electroporation
;
Flow Cytometry
;
Genetic Therapy
;
Humans
;
Mesenchymal Stromal Cells
;
Methods
;
Plasmids
;
Population Characteristics
;
Tooth
;
Transfection
;
Transforming Growth Factors
8.Study of Recellularized Human Acellular Arterial Matrix Repairs Porcine Biliary Segmental Defects
Wei LIU ; Sheng Ning ZHANG ; Zong Qiang HU ; Shi Ming FENG ; Zhen Hui LI ; Shu Feng XIAO ; Hong Shu WANG ; Li LI
Tissue Engineering and Regenerative Medicine 2019;16(6):653-665
BACKGROUND: With the popularity of laparoscopic cholecystectomy, common bile duct injury has been reported more frequently. There is no perfect method for repairing porcine biliary segmental defects.METHODS: After the decellularization of human arterial blood vessels, the cells were cultured with GFP⁺ (carry green fluorescent protein) porcine bile duct epithelial cells. The growth and proliferation of porcine bile duct epithelial cells on the human acellular arterial matrix (HAAM) were observed by hematoxylin-eosin (HE) staining, electron microscopy, and immunofluorescence. Then, the recellularized human acellular arterial matrix (RHAAM) was used to repair biliary segmental defects in the pig. The feasibility of it was detected by magnetic resonance cholangiopancreatography, liver function and blood routine changes, HE staining, immunofluorescence, real-time quantitative PCR (RT-qPCR), and western blot.RESULTS: After 4 weeks (w) of co-culture of HAAM and GFP? porcine bile duct epithelial cells, GFP⁺ porcine bile duct epithelial cells grew stably, proliferated, and fused on HAAM. Bile was successfully drained into the duodenum without bile leakage or biliary obstruction. Immunofluorescence detection showed that GFP-positive bile duct cells could still be detected after GFP-containing bile duct cells were implanted into the acellular arterial matrix for 8 w. The implanted bile duct cells can successfully resist bile invasion and protect the acellular arterial matrix until the newborn bile duct is formed.CONCLUSION: The RHAAM can be used to repair biliary segmental defects in pigs, which provides a new idea for the clinical treatment of common bile duct injury.
Bile
;
Bile Ducts
;
Blood Vessels
;
Blotting, Western
;
Cholangiopancreatography, Magnetic Resonance
;
Cholecystectomy, Laparoscopic
;
Coculture Techniques
;
Common Bile Duct
;
Duodenum
;
Epithelial Cells
;
Fluorescent Antibody Technique
;
Humans
;
Infant, Newborn
;
Liver
;
Methods
;
Microscopy, Electron
;
Polymerase Chain Reaction
;
Swine
;
Tissue Engineering
9.Effect of Resolvin D1 and E1 on Mucin Expression in Human Airway Epithelial Cells.
Hyung Geun KIM ; Tae Yeong CHOI ; Chang Hoon BAE ; Yoon Seok CHOI ; Hyung Gyun NA ; Si Youn SONG ; Yong Dae KIM
Korean Journal of Otolaryngology - Head and Neck Surgery 2019;62(1):28-35
BACKGROUND AND OBJECTIVES: Mucin is an important component of mucus that performs the first line of defense against inhaled pathogens and particles, lubrication of organs, and protection of airway. It is hyper-secreted in inflammatory airway diseases and is associated with morbidity and mortality of the affected patients. Resolvin, an autacoid of a specific lipid structure, exhibits anti-inflammatory property against inflammatory airway diseases although its effects on mucin secretion by human airway epithelial cells have not yet been demonstrated. In this regard, we investigated the effects of Resolvin on lipopolysaccharide (LPS)-induced mucin expression in human airway epithelial cells. MATERIALS AND METHOD: In mucin-producing human NCI-H292 epithelial cells, the effects and brief signaling pathways of Resolvin D1 (RvD1) and Resolvin E1 (RvE1) on the LPS-induced MUC4, MUC5AC, and MUC5B expression were investigated using reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot analysis. RESULTS: RvD1 attenuated LPS-induced MUC4, MUC5AC, and MUC5B mRNA expression and protein production in human NCI-H292 cells while RvE1 did not. RvD1 significantly blocked LPS-induced activated phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) and p38 MAPK and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) while RvE1 did not. CONCLUSION: These results suggest that RvD1 attenuates LPS-induced MUC4, MUC5AC, and MUC5B expressions via ERK1/2 MAPK, p38 MAPK, and NF-κB signaling pathways in airway epithelial cells. Therefore, RvD1 may modulate the control of mucus-hypersecretion in inflammatory airway diseases.
B-Lymphocytes
;
Blotting, Western
;
Enzyme-Linked Immunosorbent Assay
;
Epithelial Cells*
;
Humans*
;
Lubrication
;
Methods
;
Mortality
;
Mucins*
;
Mucus
;
p38 Mitogen-Activated Protein Kinases
;
Phosphorylation
;
Phosphotransferases
;
Protein Kinases
;
RNA, Messenger
10.Helicobacter pylori inhibited cell proliferation in human periodontal ligament fibroblasts through the Cdc25C/CDK1/cyclinB1 signaling cascade
Huanying LI ; Dongsheng LIANG ; Naiming HU ; Xingzhu DAI ; Jianing HE ; Hongmin ZHUANG ; Wanghong ZHAO
Journal of Periodontal & Implant Science 2019;49(3):138-147
PURPOSE: Several studies have shown that the oral cavity is a secondary location for Helicobacter pylori colonization and that H. pylori is associated with the severity of periodontitis. This study investigated whether H. pylori had an effect on the periodontium. We established an invasion model of a standard strain of H. pylori in human periodontal ligament fibroblasts (hPDLFs), and evaluated the effects of H. pylori on cell proliferation and cell cycle progression. METHODS: Different concentrations of H. pylori were used to infect hPDLFs, with 6 hours of co-culture. The multiplicity of infection in the low- and high-concentration groups was 10:1 and 100:1, respectively. The Cell Counting Kit-8 method and Ki-67 immunofluorescence were used to detect cell proliferation. Flow cytometry, quantitative real-time polymerase chain reaction, and western blots were used to detect cell cycle progression. In the high-concentration group, the invasion of H. pylori was observed by transmission electron microscopy. RESULTS: It was found that H. pylori invaded the fibroblasts, with cytoplasmic localization. Analyses of cell proliferation and flow cytometry showed that H. pylori inhibited the proliferation of periodontal fibroblasts by causing G2 phase arrest. The inhibition of proliferation and G2 phase arrest were more obvious in the high-concentration group. In the low-concentration group, the G2 phase regulatory factors cyclin dependent kinase 1 (CDK1) and cell division cycle 25C (Cdc25C) were upregulated, while cyclin B1 was inhibited. However, in the high-concentration group, cyclin B1 was upregulated and CDK1 was inhibited. Furthermore, the deactivated states of tyrosine phosphorylation of CDK1 (CDK1-Y15) and serine phosphorylation of Cdc25C (Cdc25C-S216) were upregulated after H. pylori infection. CONCLUSIONS: In our model, H. pylori inhibited the proliferation of hPDLFs and exerted an invasive effect, causing G2 phase arrest via the Cdc25C/CDK1/cyclin B1 signaling cascade. Its inhibitory effect on proliferation was stronger in the high-concentration group.
Blotting, Western
;
CDC2 Protein Kinase
;
Cell Count
;
Cell Cycle
;
Cell Proliferation
;
Coculture Techniques
;
Colon
;
Cyclin B1
;
Cytoplasm
;
Fibroblasts
;
Flow Cytometry
;
Fluorescent Antibody Technique
;
G2 Phase
;
Helicobacter pylori
;
Helicobacter
;
Humans
;
Methods
;
Microscopy, Electron, Transmission
;
Mouth
;
Periodontal Ligament
;
Periodontitis
;
Periodontium
;
Phosphorylation
;
Real-Time Polymerase Chain Reaction
;
Serine
;
Tyrosine

Result Analysis
Print
Save
E-mail