1.Genetic and phenotypic analysis of MYO15A rare variants associated with autosomal recessive hearing loss.
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):38-43
Objective:To analyze the phenotype and genotype characteristics of autosomal recessive hearing loss caused by MYO15A gene variants, and to provide genetic diagnosis and genetic counseling for patients and their families. Methods:Identification of MYO15A gene variants by next generation sequencing in two sporadic cases of hearing loss at Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine. The sequence variants were verified by Sanger sequencing.The pathogenicity of these variants was determined according to the American College of Medical Genetics and Genomics(ACMG) variant classification guidelines, in conjuction with clinical data. Results:The probands of the two families have bilateral,severe or complete hearing loss.Four variants of MYO15A were identified, including one pathogenic variant that has been reported, two likely pathogenic variants,and one splicing variant of uncertain significance. Patient I carries c. 3524dupA(p. Ser1176Valfs*14), a reported pathogenic variant, and a splicing variant c. 10082+3G>A of uncertain significance according to the ACMG guidelines. Patient I was treated with bilateral hearing aids with satisfactory effect, demonstrated average hearing thresholds of 37.5 dB in the right ear and 33.75 dB in the left ear. Patient Ⅱ carries c. 7441_7442del(p. Leu2481Glufs*86) and c. 10250_10252del(p. Ser3417del),a pair of as likely pathogenic variants according to the ACMG guidelines. Patient Ⅱ, who underwent right cochlear implantation eight years ago, achieved scores of 9 on the Categorical Auditory Performance-Ⅱ(CAP-Ⅱ) and 5 on the Speech Intelligibility Rating(SIR). Conclusion:This study's discovery of the rare c. 7441_7442del variant and the splicing variant c. 10082+3G>A in the MYO15A gene is closely associated with autosomal recessive hearing loss, expanding the MYO15A variant spectrum. Additionally, the pathogenicity assessment of the splicing variant facilitates classification of splicing variations.
Humans
;
Pedigree
;
China
;
Deafness/genetics*
;
Hearing Loss/genetics*
;
Phenotype
;
Hearing Loss, Sensorineural/genetics*
;
Mutation
;
Myosins/genetics*
2.Research progress on hereditary endocrine and metabolic diseases associated with sensorineural hearing loss.
Fang CHEN ; Qinying ZHANG ; Qiujing ZHANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):63-69
Hereditary endocrine and metabolic diseases , caused by genetic factors, exhibit complex and diverse symptoms, including the possibility of concurrent sensorineural deafness. Currently, there is a limited clinical understanding of hereditary endocrine and metabolic diseases that manifest with deafness, the pathogenesis remains unclear,and there is a lack of effective diagnostic and treatment methods. This article summarizes the research progress of hereditary endocrine and metabolic diseases complicated with deafness from the pathogenesis, clinical phenotype, diagnosis and treatment. Understanding the current research progress and integrating genetic analysis into clinical practice are crucial for accurate diagnosis and treatment, evaluating clinical efficacy, and providing effective genetic counseling for these diseases.
Humans
;
Deafness/genetics*
;
Hearing Loss, Sensorineural/diagnosis*
;
Phenotype
;
Metabolic Diseases/genetics*
;
Genetic Counseling
3.Clinical features of CAPOS syndrome caused by maternal ATP1A3 gene variation: a case report.
Yun GAO ; Fengjiao LI ; Rong LUO ; Guohui CHEN ; Danyang LI ; Dayong WANG ; Qiuju WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2024;38(1):73-76
CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.
Humans
;
Child
;
Female
;
Cerebellar Ataxia/diagnosis*
;
Talipes Cavus
;
Hearing Loss, Sensorineural/diagnosis*
;
Optic Atrophy/diagnosis*
;
Mutation
;
Phenotype
;
Sodium-Potassium-Exchanging ATPase/genetics*
;
Foot Deformities, Congenital
;
Reflex, Abnormal
4.Genetic diversity analysis and fingerprinting of 175 Chimonanthus praecox germplasm based on SSR molecular marker.
Xiujun WANG ; Yanbei ZHAO ; Jing WANG ; Zihang LI ; Jitang ZHANG ; Qingwei LI
Chinese Journal of Biotechnology 2024;40(1):252-268
The elucidation of resources pertaining to the Chimonanthus praecox varieties and the establishment of a fingerprint serve as crucial underpinnings for advancing scientific inquiry and industrial progress in relation to C. praecox. Employing the SSR molecular marker technology, an exploration of the genetic diversity of 175 C. praecox varieties (lines) in the Yanling region was conducted, and an analysis of the genetic diversity among these varieties was carried out using the UPDM clustering method in NTSYSpc 2.1 software. We analyzed the genetic structure of 175 germplasm using Structure v2.3.3 software based on a Bayesian model. General linear model (GLM) association was utilized to analyze traits and markers. The genetic diversity analysis revealed a mean number of alleles (Na) of 6.857, a mean expected heterozygosity (He) of 0.496 3, a mean observed heterozygosity (Ho) of 0.503 7, a mean genetic diversity index of Nei՚s of 0.494 9, and a mean Shannon information index of 0.995 8. These results suggest that the C. praecox population in Yanling exhibits a rich genetic diversity. Additionally, the population structure and the UPDM clustering were examined. In the GLM model, a total of fifteen marker loci exhibited significant (P < 0.05) association with eight phenotypic traits, with the explained phenotypic variation ranging from 14.90% to 36.03%. The construction of fingerprints for C. praecox varieties (lines) was accomplished by utilizing eleven primer pairs with the highest polymorphic information content, resulting in the analysis of 175 SSR markers. The present study offers a thorough examination of the genetic diversity and SSR molecular markers of C. praecox in Yanling, and establishes a fundamental germplasm repository of C. praecox, thereby furnishing theoretical underpinnings for the selection and cultivation of novel and superior C. praecox varieties, varietal identification, and resource preservation and exploitation.
Bayes Theorem
;
Biomarkers
;
Phenotype
;
Cluster Analysis
;
Genetic Variation
5.Phenotypic and genotypic characterization of patients with retinitis pigmentosa in a tertiary hospital in the Philippines
Tamilyn Chelsea C. Laddaran ; Manuel Benjamin B. Ibanez IV ; Marianne Grace P. Navarrete
Philippine Journal of Ophthalmology 2024;49(2):156-167
OBJECTIVES
To determine the phenotypic and genotypic characterization of individuals with retinitis pigmentosa (RP), identify their genetic etiologies, and provide counseling to affected patients.
METHODSThis non-interventional, observational study evaluated 18 patients with clinically-diagnosed RP from 15 different families. The patients underwent complete ophthalmological examination with retinal functional and morphologic assessment. Genetic testing was done using next-generation sequencing.
RESULTSTen gene mutations with 22 variants were identified. The inheritance pattern was predominantly autosomal recessive (70%). The most common mutation was EYS (27.8%). One possible novel gene, RGS7, and novel variants of CNGB1 were identified. Characteristic RP profiles were observed, with syndromic findings noted in USH2A and BBS5 mutations.
CONCLUSIONPhenotypic characteristics among different gene mutations have distinct features. This is the first study in the country to demonstrate the genotypic heterogeneity of RP, displaying 22 variants with 3 noted novel mutations.
Human ; Retinitis Pigmentosa ; Philippines ; Genotype ; Phenotype
6.Genetic background of idiopathic neurodevelopmental delay patients with significant brain deviation volume.
Xiang CHEN ; Yuxi CHEN ; Kai YAN ; Huiyao CHEN ; Qian QIN ; Lin YANG ; Bo LIU ; Guoqiang CHENG ; Yun CAO ; Bingbing WU ; Xinran DONG ; Zhongwei QIAO ; Wenhao ZHOU
Chinese Medical Journal 2023;136(7):807-814
BACKGROUND:
Significant brain volume deviation is an essential phenotype in children with neurodevelopmental delay (NDD), but its genetic basis has not been fully characterized. This study attempted to analyze the genetic factors associated with significant whole-brain deviation volume (WBDV).
METHODS:
We established a reference curve based on 4222 subjects ranging in age from the first postnatal day to 18 years. We recruited only NDD patients without acquired etiologies or positive genetic results. Cranial magnetic resonance imaging (MRI) and clinical exome sequencing (2742 genes) data were acquired. A genetic burden test was performed, and the results were compared between patients with and without significant WBDV. Literature review analyses and BrainSpan analysis based on the human brain developmental transcriptome were performed to detect the potential role of genetic risk factors in human brain development.
RESULTS:
We recruited a total of 253 NDD patients. Among them, 26 had significantly decreased WBDV (<-2 standard deviations [SDs]), and 14 had significantly increased WBDV (>+2 SDs). NDD patients with significant WBDV had higher rates of motor development delay (49.8% [106/213] vs . 75.0% [30/40], P = 0.003) than patients without significant WBDV. Genetic burden analyses found 30 genes with an increased allele frequency of rare variants in patients with significant WBDV. Analyses of the literature further demonstrated that these genes were not randomly identified: burden genes were more related to the brain development than background genes ( P = 1.656e -9 ). In seven human brain regions related to motor development, we observed burden genes had higher expression before 37-week gestational age than postnatal stages. Functional analyses found that burden genes were enriched in embryonic brain development, with positive regulation of synaptic growth at the neuromuscular junction, positive regulation of deoxyribonucleic acid templated transcription, and response to hormone, and these genes were shown to be expressed in neural progenitors. Based on single cell sequencing analyses, we found TUBB2B gene had elevated expression levels in neural progenitor cells, interneuron, and excitatory neuron and SOX15 had high expression in interneuron and excitatory neuron.
CONCLUSION
Idiopathic NDD patients with significant brain volume changes detected by MRI had an increased prevalence of motor development delay, which could be explained by the genetic differences characterized herein.
Child
;
Humans
;
Neurodevelopmental Disorders/epidemiology*
;
Genetic Testing
;
Phenotype
;
Brain/pathology*
;
Genetic Background
;
SOX Transcription Factors/genetics*
7.Rapid identification of chronic kidney disease in electronic health record database using computable phenotype combining a common data model.
Huai-Yu WANG ; Jian DU ; Yu YANG ; Hongbo LIN ; Beiyan BAO ; Guohui DING ; Chao YANG ; Guilan KONG ; Luxia ZHANG
Chinese Medical Journal 2023;136(7):874-876
8.Delineating asthma according to inflammation phenotypes with a focus on paucigranulocytic asthma.
Yinhe FENG ; Xiaoyin LIU ; Yubin WANG ; Rao DU ; Hui MAO
Chinese Medical Journal 2023;136(13):1513-1522
Asthma is characterized by chronic airway inflammation and airway hyper-responsiveness. However, the differences in pathophysiology and phenotypic symptomology make a diagnosis of "asthma" too broad hindering individualized treatment. Four asthmatic inflammatory phenotypes have been identified based on inflammatory cell profiles in sputum: eosinophilic, neutrophilic, paucigranulocytic, and mixed-granulocytic. Paucigranulocytic asthma may be one of the most common phenotypes in stable asthmatic patients, yet it remains much less studied than the other inflammatory phenotypes. Understanding of paucigranulocytic asthma in terms of phenotypic discrimination, distribution, stability, surrogate biomarkers, underlying pathophysiology, clinical characteristics, and current therapies is fragmented, which impedes clinical management of patients. This review brings together existing knowledge and ongoing research about asthma phenotypes, with a focus on paucigranulocytic asthma, in order to present a comprehensive picture that may clarify specific inflammatory phenotypes and thus improve clinical diagnoses and disease management.
Humans
;
Asthma/drug therapy*
;
Inflammation/diagnosis*
;
Respiratory System
;
Phenotype
;
Biomarkers
;
Sputum
;
Eosinophils
;
Neutrophils
9.Phenotype and genotype analyses of two pedigrees with inherited fibrinogen deficiency.
Kai Qi JIA ; Zheng Xian SU ; Hui Lin CHEN ; Xiao Yong ZHENG ; Man Lin ZENG ; Ke ZHANG ; Long Ying YE ; Li hong YANG ; Yan Hui JIN ; Ming Shan WANG
Chinese Journal of Hematology 2023;44(11):930-935
Objective: To analyze the phenotype and genotype of two pedigrees with inherited fibrinogen (Fg) deficiency caused by two heterozygous mutations. We also preliminarily probed the molecular pathogenesis. Methods: The prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT) and plasma fibrinogen activity (Fg∶C) of all family members (nine people across three generations and three people across two generations) were measured by the clotting method. Fibrinogen antigen (Fg:Ag) was measured by immunoturbidimetry. Direct DNA sequencing was performed to analyze all exons, flanking sequences, and mutated sites of FGA, FGB, and FGG for all members. Thrombin-catalyzed fibrinogen polymerization was performed. ClustalX 2.1 software was used to analyze the conservatism of the mutated sites. MutationTaster, PolyPhen-2, PROVEAN, SIFT, and LRT online bioinformatics software were applied to predict pathogenicity. Swiss PDB Viewer 4.0.1 was used to analyze the changes in protein spatial structure and molecular forces before and after mutation. Results: The Fg∶C of two probands decreased (1.28 g/L and 0.98 g/L, respectively). The Fg∶Ag of proband 1 was in the normal range of 2.20 g/L, while it was decreased to 1.01 g/L in proband 2. Through genetic analysis, we identified a heterozygous missense mutation (c.293C>A; p.BβAla98Asp) in exon 2 of proband 1 and a heterozygous nonsense mutation (c.1418C>G; p.BβSer473*) in exon 8 of proband 2. The conservatism analysis revealed that Ala98 and Ser473 presented different conservative states among homologous species. Online bioinformatics software predicted that p.BβAla98Asp and p.BβSer473* were pathogenic. Protein models demonstrated that the p.BβAla98Asp mutation influenced hydrogen bonds between amino acids, and the p.BβSer473* mutation resulted in protein truncation. Conclusion: The dysfibrinogenemia of proband 1 and the hypofibrinogenemia of proband 2 appeared to be related to the p.BβAla98Asp heterozygous missense mutation and the p.BβSer473* heterozygous nonsense mutation, respectively. This is the first ever report of these mutations.
Humans
;
Afibrinogenemia/genetics*
;
Codon, Nonsense
;
Pedigree
;
Phenotype
;
Fibrinogen/genetics*
;
Genotype


Result Analysis
Print
Save
E-mail