1.The mechanism and research progress of T lymphocyte-mediated immune response in cardiac fibrosis remodeling.
Yong PENG ; Wen-Yue GAO ; Di QIN
Acta Physiologica Sinica 2025;77(1):95-106
This article reviews the role of different types of T lymphocyte subpopulations in pathological cardiac fibrosis remodeling. T helper 17 (Th17) cells are implicated in promoting the development of pathological cardiac fibrosis remodeling, while regulatory T (Treg) cells exert an immunosuppressive functions as negative regulators, attributing to their interleukin-10 (IL-10) secretion and functional phenotype. Th1 and Th2 cells are involved in different stages of the inflammatory response in pathological cardiac fibrosis remodeling, and their influence varies according to the pathological mechanisms of different cardiac diseases. In addition, CD8+ T cells regulate the activation and polarization of macrophages, promote the secretion of granzyme B, induce cardiomyocyte apoptosis, and aggravate cardiac fibrosis post-myocardial infarction. Considering the limitation of cytokine modulation in clinical therapy of heart failure, targeting T-cell co-stimulatory molecules emerges as a promising strategy for treating pathologic cardiac remodeling. Future research will explore chimeric antigen receptor modified T cells (CAR-T cells) technology and targeted regulation of Treg cells quantity and phenotype, for both of which have the potential to become effective methods for treating heart disease.
Humans
;
Fibrosis
;
T-Lymphocytes, Regulatory/immunology*
;
Ventricular Remodeling/immunology*
;
Myocardium/immunology*
;
Animals
;
Th17 Cells/immunology*
;
Interleukin-10/metabolism*
;
Th1 Cells/immunology*
;
Th2 Cells/immunology*
2.Porphyromonas gingivalis-induced glucose intolerance during periapical lesions requires its LPS throught a Th17 immune response.
Sylvie LÊ ; Emma STURARO ; Charlotte THOMAS ; Thibault CANCEILL ; Bertrand EKAMBI ; Nawel FELLOUAH ; Claude KNAUF ; Anne ABOT ; Christophe TENAILLEAU ; Benjamin DUPLOYER ; Pascale LOUBIERES ; Alison PROSPER ; Swann DIEMER ; Rémy BURCELIN ; Franck DIEMER ; Matthieu MINTY ; Vincent BLASCO-BAQUE
International Journal of Oral Science 2025;17(1):69-69
This study investigates the role of Interleukin 17 (IL-17) in exacerbating periapical lesions caused by Porphyromonas gingivalis (Pg) lipopolysaccharides (LPS) in the context of metabolic disease and its potential impact on glucose tolerance. Researchers developed a unique mouse model where mice were monocolonized with Pg to induce periapical lesions. After 1 month, they were fed a high-fat diet (HFD) for 2 months to simulate metabolic disease and oral microbiota dysbiosis. To explore the role of LPS from Pg, wild-type (WT) mice were challenged with purified LPS from Porphyromonas gingivalis, as well as with LPS-depleted and non-depleted Pg bacteria; IL-17 knockout (KO) mice were also included to assess the role of IL-17 signaling. The impact on bone lysis, periapical injury, glucose intolerance, and immune response was assessed. Results showed that in WT mice, the presence of LPS significantly worsened bone lysis, Th17 cell recruitment, and periapical injury. IL-17 KO mice exhibited reduced bone loss, glucose intolerance, and immune cell infiltration. Additionally, inflammatory markers in adipose tissue were lower in IL-17 KO mice, despite increased dysbiosis. The findings suggest that IL-17 plays a critical role in amplifying Pg-induced periapical lesions and systemic metabolic disturbances. Targeting IL-17 recruitment could offer a novel approach to improving glycemic control and reducing type 2 diabetes (T2D) risk in individuals with periapical disease.
Animals
;
Porphyromonas gingivalis/immunology*
;
Th17 Cells/immunology*
;
Lipopolysaccharides/immunology*
;
Mice
;
Glucose Intolerance/microbiology*
;
Interleukin-17/metabolism*
;
Mice, Knockout
;
Mice, Inbred C57BL
;
Disease Models, Animal
;
Diet, High-Fat
;
Periapical Diseases/microbiology*
;
Male
;
Dysbiosis
3.Progress of research on the gut microbiome and its metabolite short-chain fatty acids in postmenopausal osteoporosis: a literature review.
Yao CHEN ; Ying XIE ; Xijie YU
Frontiers of Medicine 2025;19(3):474-492
Postmenopausal osteoporosis (PMOP) is a systemic metabolic bone disease caused by the decrease in estrogen levels after menopause. It leads to bone loss, microstructural damage, and an increased risk of fractures. Studies have found that the gut microbiota and its metabolites can regulate bone metabolism through the gut-bone axis and the gut-brain axis. As research progresses, PMOP has been found to be associated with gut microbiota dysbiosis and Th17/Treg imbalance. The gut microbiota is closely related to the development and differentiation of Treg and Th17 cells. Among them, the metabolites of the gut microbiota such as short-chain fatty acids (SCFAs) can regulate the differentiation of effector T cells by acting on molecular receptors on immune cells, thereby regulating the bone immune process. The multifaceted relationship among the gut microbiota, SCFAs, Th17/Treg cell-mediated bone immunity, and bone metabolism is eliciting attention from researchers. Through a review of existing literature, we have comprehensively summarized the effects of the gut microbiota and SCFAs on PMOP, especially from the perspective of Th17/Treg balance. Regulating this balance may provide new opportunities for PMOP treatment.
Humans
;
Gastrointestinal Microbiome/immunology*
;
Fatty Acids, Volatile/metabolism*
;
Osteoporosis, Postmenopausal/immunology*
;
Female
;
T-Lymphocytes, Regulatory/metabolism*
;
Th17 Cells/metabolism*
;
Dysbiosis/immunology*
;
Bone and Bones/metabolism*
4.Andrographolide sulfonate alleviates rheumatoid arthritis by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation.
Chunhong JIANG ; Xi ZENG ; Jia WANG ; Xiaoqian WU ; Lijuan SONG ; Ling YANG ; Ze LI ; Ning XIE ; Xiaomei YUAN ; Zhifeng WEI ; Yi GUAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):480-491
Andrographolide sulfonate (AS) is a sulfonated derivative of andrographolide extracted from Andrographis paniculata (Burm.f.) Nees, and has been approved for several decades in China. The present study aimed to investigate the novel therapeutic application and possible mechanisms of AS in the treatment of rheumatoid arthritis. Results indicated that administration of AS by injection or gavage significantly reduced the paw swelling, improved body weights, and attenuated pathological changes in joints of rats with adjuvant-induced arthritis. Additionally, the levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1β in the serum and ankle joints were reduced. Bioinformatics analysis, along with the spleen index and measurements of IL-17 and IL-10 levels, suggested a potential relationship between AS and Th17 cells under arthritic conditions. In vitro, AS was shown to block Th17 cell differentiation, as evidenced by the reduced percentages of CD4+ IL-17A+ T cells and decreased expression levels of RORγt, IL-17A, IL-17F, IL-21, and IL-22, without affecting the cell viability and apoptosis. This effect was attributed to the limited glycolysis, as indicated by metabolomics analysis, reduced glucose uptake, and pH measurements. Further investigation revealed that AS might bind to hexokinase2 (HK2) to down-regulate the protein levels of HK2 but not glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or pyruvate kinase M2 (PKM2), and overexpression of HK2 reversed the inhibition of AS on Th17 cell differentiation. Furthermore, AS impaired the activation of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signals in vivo and in vitro, which was abolished by the addition of lactate. In conclusion, AS significantly improved adjuvant-induced arthritis (AIA) in rats by inhibiting glycolysis-mediated activation of PI3K/AKT to restrain Th17 cell differentiation.
Animals
;
Th17 Cells/immunology*
;
Diterpenes/pharmacology*
;
Arthritis, Rheumatoid/metabolism*
;
Proto-Oncogene Proteins c-akt/immunology*
;
Glycolysis/drug effects*
;
Cell Differentiation/drug effects*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Rats
;
Male
;
Rats, Sprague-Dawley
;
Humans
;
Andrographis paniculata/chemistry*
;
Arthritis, Experimental/drug therapy*
;
Interleukin-17/immunology*
;
Signal Transduction/drug effects*
5.Functions of nucleolar complex associated 4 homolog in activated T cells.
Jiajun YIN ; Jie GUO ; Jianhua ZHANG
Chinese Journal of Biotechnology 2024;40(11):4057-4070
Nucleolar complex associated 4 homolog (NOC4L) is a key factor in ribosome biogenesis, and this study aims to investigate its roles in activated T cells from the perspective of translation regulation. Firstly, flow cytometry was employed to determine the expression levels of NOC4L in the CD4+ T cells under different conditions in the transgenic reporter mice expressing Noc4lmCherry. Subsequently, the expression of NOC4L along with cell proliferation was examined under Th1 and Th17 polarization conditions. Finally, in vitro experiments were conducted to identify the proteins interacting with NOC4L during the activation of Th1 and Th17 cells, on the basis of which the potential mechanisms of NOC4L were explored. The results showed that the expression level of NOC4L increased in activated CD4+ T cells, and the expression of NOC4L was closely associated with the proliferation and division of activated T cells. The in vitro experiments revealed interactions between NOC4L and proteins involved in ribosome assembly and cell proliferation during T cell activation. These findings lay a foundation for probing into the post-transcriptional regulation in helper T cells and hold profound significance for understanding the activation and regulatory mechanisms of T cells.
Animals
;
Mice
;
Lymphocyte Activation
;
Cell Proliferation
;
Mice, Transgenic
;
Nuclear Proteins/genetics*
;
Th1 Cells/immunology*
;
Th17 Cells/metabolism*
;
CD4-Positive T-Lymphocytes/immunology*
;
Ribosomes/metabolism*
6.Astragalus membranaceus improves therapeutic efficacy of asthmatic children by regulating the balance of Treg/Th17 cells.
Wei WANG ; Qing-Bin LIU ; Wei JING
Chinese Journal of Natural Medicines (English Ed.) 2019;17(4):252-263
Astragalus membranaceus may be a potential therapy for childhood asthma but its driving mechanism remains elusive. The main components of A. membranaceus were identified by HPLC. The children with asthma remission were divided into two combination group (control group, the combination of budesonide and terbutaline) and A. membranaceus group (treatment group, the combination of budesonide, terbutaline and A. membranaceus). The therapeutic results were compared between two groups after 3-month therapy. Porcine peripheral blood mononuclear cells (PBMCs) were isolated from venous blood by using density gradient centrifugation on percoll. The levels of FoxP3, EGF-β, IL-17 and IL-23 from PBMCs and serum IgE were measured. The relative percentage of Treg/Th17 cells was determined using flow cytometry. The main components of A. membranaceus were calycosin-7-O-glucoside, isoquercitrin, ononin, calycosin, quercetin, genistein, kaempferol, isorhamnetin and formononetin, all of which may contribute to asthma therapy. Lung function was significantly improved in the treatment group when compared with a control group (P < 0.05). The efficacy in preventing the occurrence of childhood asthma was higher in the treatment group than the control group (P < 0.05). The levels of IgE, IL-17 and IL-23 were reduced significantly in the treatment group when compared with the control group, while the levels of FoxP3 and TGF-β were increased in the treatment group when compared with the control group (P < 0.05). A. membranaceus increased the percentage of Treg cells and reduced the percentage of Th17 cells. A. membranaceus is potential natural product for improving the therapeutic efficacy of combination therapy of budesonide and terbutaline for the children with asthma remission by modulating the balance of Treg/Th17 cells.
Animals
;
Asthma
;
drug therapy
;
immunology
;
Astragalus propinquus
;
chemistry
;
Budesonide
;
administration & dosage
;
Cells, Cultured
;
Child
;
Child, Preschool
;
Cytokines
;
metabolism
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
Female
;
Humans
;
Immunologic Factors
;
administration & dosage
;
pharmacology
;
Leukocytes, Mononuclear
;
drug effects
;
metabolism
;
Lung
;
drug effects
;
physiology
;
Male
;
Swine
;
T-Lymphocytes, Regulatory
;
cytology
;
drug effects
;
Terbutaline
;
administration & dosage
;
Th17 Cells
;
cytology
;
drug effects
;
Treatment Outcome
7.Prophylactic administration of all-trans retinoic acid alleviates inflammation in rats with collagen-induced arthritis.
Xiang ZENG ; Jing-Yan SHAN ; Yang LIU ; Yan-Hua NING ; Xue-Jian XIE ; Yu-Yan SHEN ; Jie SONG ; Yun LI
Journal of Southern Medical University 2016;37(2):172-177
OBJECTIVETo investigate the effects of prophylactic administration of all-trans retinoic acid (ATRA) in relieving inflammation in a rat model of collagen-induced arthritis (CIA).
METHODSFemale Wistar rats (6 to 8 weeks old) were randomly divided into normal control group, solvent control group, and prophylactic ATRA treatment (0.05, 0.5, and 5 mg/kg) groups. All the rats except for those in normal control group were subjected to subcutaneous injection of type II collagen and incomplete Freund adjuvant in the tails to induce CIA, followed by injection on the following day with saline, corn oil or different doses of ATRA 3 times a week. The arthritis index (AI) scores, histological scores, serum levels of TNF-α, IL-17A, and IL-10, and expressions of proteases related with cartilage damage were evaluated.
RESULTSOn the 15th day after the primary immunization, the AI scores increased significantly in all but the normal control groups; the scores increased progressively in all the 3 ATRA groups but remained lower than that in the solvent control group, which was stable over time. The rats in the 3 ATRA groups showed obvious pathologies in the knee and ankle joints, but the semi-quantitative scores of pathology damage showed no significance among them. Compared with those in solvent control group, the serum IL-17A and TNF-α levels decreased, serum IL-10 level increased, and the expressions of ADAMT-4 and MMP-3 proteins decreased significantly in the knees in the 3 ATRA groups.
CONCLUSIONATRA can reduce the production of TNF-α and IL-17A and increase the production of IL-10 to alleviate the inflammation in rats with CIA. ATRA may delay the progression of RA by correcting the imbalance of Th1/Th2 and Th17/Treg.
ADAMTS4 Protein ; metabolism ; Animals ; Arthritis, Experimental ; chemically induced ; drug therapy ; Collagen Type II ; Female ; Freund's Adjuvant ; Inflammation ; drug therapy ; Interleukin-10 ; blood ; Interleukin-17 ; blood ; Lipids ; Matrix Metalloproteinase 3 ; metabolism ; Rats ; Rats, Wistar ; T-Lymphocytes, Regulatory ; immunology ; Th17 Cells ; immunology ; Tretinoin ; pharmacology ; Tumor Necrosis Factor-alpha ; blood
8.The role of Th9, Th17 and Treg cells on pathogenesis of nasal polyps.
Ya WANG ; Yue WANG ; Yongming MA ; Xiaoping PU
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2016;30(4):277-281
OBJECTIVE:
To investigate the expression levels of Th9, Th17 and Treg cells in peripheral blood of patients with chronic rhinosinusitis with nasal polyps (CRSwNP), and explore the role of Th9, Th17 and Treg cells in the progression of CRSwNP.
METHOD:
Forty-six cases with CRSwNP served as an experimental group, while 22 cases with simple nasal bleeding or nasal septum deviation served as a control group. The peripheral blood of patients in both groups was collected and analyzed. (1) Using flow cytometry (FCM) to detect the expression rates of Th9, Th17 and Treg cells in peripheral blood. (2) Using qRT-PCR to detect the expression of relevant transcription factor of Th9, Th17 and Treg cells (IL-9mRNA, PU. 1, IRF-4, RoRc, and Foxp3). (3) Using SPSS16.0 to analyse the differentiations and the revelance among these three cells.
RESULT:
(1) The expression rates of Th9 and Th17 cells in patients with CRSwNP (1.29% ± 0.18%, 4.03% ± 0.69%) was higher than the control group (0.45% ± 0.14%, 1.35% ± 0.26%). But the expression rates of Treg cells in the experimental group (2.98% ± 0.13%) was significantly lower than the control group (5.44% ± 0.57%). The differences were statistically significant (P < 0.05). (2) The expression of revelant transcription factor (IL-9mRNA, PU.1, IRF-4, RoRc) in NP group was also higher than the control group. The expression of Foxp3 in the control group was higher than NP, the differences both were statistically significant (P < 0.05). (3) The difference between Th9 and Th17 in patients with NP was not significant (P > 0.05), and the negative correlation was found between Th17 and Treg (r = -0.549, P < 0.05).
CONCLUSION
The high expression level of Th9 and Th17 cells might promote the development of NP, whereas the low expression level of Treg cells might further aggravate the occurrence of NP. The main function of the imbalance of Th17/Treg cells may be immune regulation in the pathogenesis of nasal polys.
Case-Control Studies
;
Cell Differentiation
;
Disease Progression
;
Epistaxis
;
Flow Cytometry
;
Forkhead Transcription Factors
;
metabolism
;
Humans
;
Nasal Polyps
;
immunology
;
pathology
;
Nasal Septum
;
abnormalities
;
Rhinitis
;
immunology
;
pathology
;
Sinusitis
;
immunology
;
pathology
;
T-Lymphocytes, Regulatory
;
cytology
;
Th17 Cells
;
cytology
;
Transcription Factors
;
metabolism
9.Effect of Banxia Qinlian Decoction on Th17/IL-17 Immune Inflammatory Way of Sjögren's Syndrome NOD Model Mice.
Yan LU ; Yi CHEN ; Ya-nan WANG ; Hui LIU ; Ji-sheng ZHANG ; Wei-guo MA ; Zhi-ming SHEN ; Jie WANG ; Kang WANG ; Feng-xian MENG
Chinese Journal of Integrated Traditional and Western Medicine 2015;35(5):612-617
OBJECTIVETo explore the molecular mechanism of exocrine immune inflammatory injury of Sjögren's Syndrome and the intervention of Banxia Qinlian Decoction (BQD).
METHODSTotally 18 female NOD mice were randomly divided into the model group, the positive drug group, and the BQD group, 6 in each group. Six female BALB/c mice were recruited as a blank control group. Mice in the blank control group and the model group were gavaged with deionized water at the daily dose of 0.1 mL/10 g body weight. Tripterygium Tablet was administered by gastrogavage to mice in the positive group at the daily dose of 10 mg/kg. BQD was administered by gastrogavage to mice in the BQD group at the daily dose of 60 g crude drugs/kg. After 12 weeks of medication, mice were sacrificed. Their eyeballs were excised and blood collected. Tissues of bilateral parotids and submandibular glands were kept. mRNA transcriptional levels of IL-17, IL-6, type 3 muscarinic acetylcholine receptors (M3R), aquaporin protein-5 (AQP5) were detected by RT-PCR. Expression levels of M3R and AQP5 protein were detected by Western blot. Protein expression levels of IL-17 and IL-6 were detected by ELISA.
RESULTSCompared with the normal group, mRNA transcriptional levels and protein expression levels of IL-17, IL-6, M3R, and AQP5 were significantly up-regulated in the model group (P < 0.01). Compared with the model group, mRNA transcriptional levels and protein expression levels of IL-17, IL-6, M3R, and AQP5 were significantly down-regulated in the positive drug group and the BQD group with statistical difference (P < 0.01, P < 0.05). Compared with the BQD group, mRNA-transcriptional levels of IL-17, IL-6, and M3R, as well as M3R and AQP5 protein expression levels were significantly down-regulated in the positive drug group (all P < 0.01).
CONCLUSIONThe molecular mechanism of BQD in inhibiting SS exocrine neurotoxic injury might be possibly related to regulating Th17/IL-17 immune inflammatory way.
Animals ; Aquaporin 5 ; metabolism ; Disease Models, Animal ; Drugs, Chinese Herbal ; pharmacology ; therapeutic use ; Female ; Interleukin-17 ; metabolism ; Interleukin-6 ; metabolism ; Mice ; Mice, Inbred BALB C ; Mice, Inbred NOD ; Sjogren's Syndrome ; drug therapy ; immunology ; Submandibular Gland ; Th17 Cells ; Up-Regulation
10.Expression of T-helper 17 cells and signal transducers in patients with psoriasis vulgaris of blood-heat syndrome and blood-stasis syndrome.
Bin FAN ; Xin LI ; Kan ZE ; Rong XU ; Ruo-Fei SHI ; Lin GENG ; Fu-Lun LI ; Yi-Fei WANG ; Jie CHEN ; Bin LI
Chinese journal of integrative medicine 2015;21(1):10-16
OBJECTIVETo investigate the levels of cytokines related to T-helper (Th) 17 cells in serum and signal transducers in the psoriatic lesions of patients with psoriasis vulgaris of blood-heat syndrome (BHS) and blood-stasis syndrome (BSS).
METHODSSixty patients with psoriasis vulgaris were divided into the BHS and BSS groups according to the syndrome differentiation of Chinese medicine (CM). Ten healthy subjects were considered as the control group. Cytokine levels of interleukin (IL)-17, IL-23 and IL-6 in serum were determined by enzyme-linked immunosorbent assay. Expression levels of signal transducer and activator of transcription 3 (STAT3), p38-mitogen-activated protein kinase (MAPK) and STAT6 in the psoriatic lesions were determined using immunohistochemistry (IHC), Western blot, and real-time quantitative reverse transcription polymerase chain reaction, respectively.
RESULTSProduction of IL-17, IL-23 and IL-6 in the BHS group and BSS group were significantly increased compared with those in the control group (P<0.05). Levels of IL-17 and IL-23 in the BHS group were higher than those in the BSS group (P<0.05). Compared with the control group, IHC positive expressions and protein expressions of STAT3 and p38-MAPK, and the STAT3 mRNA expressions in the BHS and BSS groups were significantly higher (P<0.05 or P<0.01). The protein expression of STAT3 in the BHS group was significantly higher than that in the BSS group (P<0.05).
CONCLUSIONSCytokines in serum and signal transducers in the psoriatic lesions alter with various CM syndromes of psoriasis. The results provide scientific basis for the treatment based on syndrome differentiation of CM in treating psoriasis vulgaris.
Adult ; Female ; Gene Expression Regulation ; Humans ; Immunohistochemistry ; Interleukin-17 ; blood ; Interleukin-23 ; blood ; Interleukin-6 ; blood ; Male ; Psoriasis ; blood ; enzymology ; genetics ; immunology ; RNA, Messenger ; genetics ; metabolism ; STAT3 Transcription Factor ; genetics ; metabolism ; STAT6 Transcription Factor ; genetics ; metabolism ; Signal Transduction ; Syndrome ; Th17 Cells ; immunology ; p38 Mitogen-Activated Protein Kinases ; genetics ; metabolism

Result Analysis
Print
Save
E-mail