1.Current status, trends, and challenges of continuous manufacturing technology for oral traditional Chinese medicine solid preparations.
Zi-Qian WANG ; Xue-Cheng WANG ; Zhi-Jian ZHONG ; Zhen-Feng LIU ; Ya-Qi WANG ; Bing YI ; Ming YANG ; Wei-Feng ZHU ; Zhen-Feng WU
China Journal of Chinese Materia Medica 2023;48(16):4536-4544
In recent years, continuous manufacturing technology has attracted considerable attention in the pharmaceutical industry. This technology is highly sought after for its significant advantages in cost reduction, increased efficiency, and improved productivity, making it a growing trend in the future of the pharmaceutical industry. Compared to traditional batch production methods, continuous manufacturing technology features real-time control and environmentally friendly intelligence, enabling pharmaceutical companies to produce drugs more efficiently. However, the adoption of continuous manufacturing technology has been slow in the field of traditional Chinese medicine(TCM) pharmaceuticals. On the one hand, there is insufficient research on continuous manufacturing equipment and technology that align with the characteristics of TCM preparations. On the other hand, the scarcity of talent with diverse expertise hampers its development. Therefore, in order to promote the modernization and upgrading of the TCM pharmaceutical industry, this article combined the current development status of the TCM industry to outline the development status and regulatory requirements of continuous manufacturing technology. At the same time, it analyzed the problems with existing TCM manufacturing models and explored the prospects and challenges of applying continuous manufacturing technology in the field of TCM pharmaceuticals. The analysis focused on continuous manufacturing control strategies, technical tools, and pharmaceutical equipment, aiming to provide targeted recommendations to drive the development of the TCM pharmaceutical industry.
Medicine, Chinese Traditional
;
Quality Control
;
Drug Industry
;
Technology, Pharmaceutical/methods*
;
Drugs, Chinese Herbal
;
Pharmaceutical Preparations
2.Methodology and application of process analytical technology (PAT) for traditional Chinese medicine manufacturing:a review.
Hao-Shu XIONG ; Qiang ZHANG ; Shun-Nan ZHANG ; Jin-Yong CAI ; Jing SU ; Yong-Hong ZHU ; Kai-Jing YAN
China Journal of Chinese Materia Medica 2023;48(1):22-29
Owing to the advancement in pharmaceutical technology, traditional Chinese medicine industry has seen rapid development. Preferring conventional manufacturing mode, pharmaceutical enterprises of traditional Chinese medicine have no effective process detection tools and process control methods. As a result, the quality of the final products mainly depends on testing and the quality is inconsistent in the same batch. Process analytical technology(PAT) for traditional Chinese medicine manufacturing, as one of the key advanced manufacturing techniques, can break through the bottleneck in quality control of medicine manufacturing, thus improving the production efficiency and product quality and reducing the material and energy consumption. It is applicable to the process control and real-time release of advanced manufacturing modes such as intelligent manufacturing and continuous manufacturing. This paper summarized the general idea of PAT for traditional Chinese medicine manufacturing. Through the analysis of the characteristics and status quo of the technology, we summed up the methodology for the continuous application and improvement of PAT during the whole life-cycle of traditional Chinese medicine. The five key procedures(process understanding, process detection, process modeling, process control, and continuous improvement) were summarized, and the application was reviewed. Finally, we proposed suggestions for the technical and regulatory challenges in implementing PAT in traditional Chinese medicine industry. This paper aims to provide a reference for development and application of PAT in advanced manufacturing, intelligent manufacturing, and continuous manufacturing of traditional Chinese medicine industry.
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Technology, Pharmaceutical
;
Drug Industry
;
Quality Control
3.Optimization of ethanol reflux extraction process of Ziziphi Spinosae Semen- Schisandrae Sphenantherae Fructus based on network pharmacology combined with response surface methodology.
Mian HUANG ; Yu-Meng SONG ; Xi-Yue WANG ; Bing-Tao ZHAI ; Jiang-Xue CHENG ; Xiao-Fei ZHANG ; Dong-Yan GUO
China Journal of Chinese Materia Medica 2023;48(4):966-977
The present study optimized the ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair by network pharmacology and Box-Behnken method. Network pharmacology and molecular docking were used to screen out and verify the potential active components of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus, and the process evaluation indexes were determined in light of the components of the content determination under Ziziphi Spinosae Semen and Schisandrae Sphenantherae Fructus in the Chinese Pharmacopoeia(2020 edition). The analytic hierarchy process(AHP) was used to determine the weight coefficient of each component, and the comprehensive score was calculated as the process evaluation index. The ethanol extraction process of Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus was optimized by the Box-Behnken method. The core components of the Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus drug pair were screened out as spinosin, jujuboside A, jujuboside B, schisandrin, schisandrol, schisandrin A, and schisandrin B. The optimal extraction conditions obtained by using the Box-Behnken method were listed below: extraction time of 90 min, ethanol volume fraction of 85%, and two times of extraction. Through network pharmacology and molecular docking, the process evaluation indexes were determined, and the optimized process was stable, which could provide an experimental basis for the production of preparations containing Ziziphi Spinosae Semen-Schisandrae Sphenantherae Fructus.
Ethanol
;
Molecular Docking Simulation
;
Network Pharmacology
;
Seeds/chemistry*
;
Ziziphus/chemistry*
;
Plant Extracts/chemistry*
;
Schisandra/chemistry*
;
Fruit/chemistry*
;
Technology, Pharmaceutical
4.Data mining in traditional Chinese medicine product quality review.
Sheng ZHANG ; Hou-Liu CHEN ; Hai-Bin QU
China Journal of Chinese Materia Medica 2023;48(5):1264-1272
The traditional Chinese medicine(TCM) enterprises have accumulated a large amount of product quality review(PQR) data. Mining these data can reveal the hidden knowledge in production and helps improve pharmaceutical manufacturing technology. However, there are few studies involving the mining of PQR data and thus enterprises lack the guidance to analyze the data. This study proposed a method to mine the PQR data, which consisted of 4 functional modules: data collection and preprocessing, risk classification of variables, risk evaluation by batches, and the regression analysis of quality. Further, we carried out a case study of the formulation process of a TCM product to illustrate the method. In the case study, the data of 398 batches of products during 2019-2021 were collected, which contained 65 process variables. The risks of variables were classified according to the process performance index. The risk of each batch was analyzed through short-term and long-term evaluation, and the critical variables with the strongest impact on the product quality were identified by partial least square regression. The results showed that 1 variable and 13 batches were of high risk, and the critical process variable was the quality of the intermediates. The proposed method enables enterprises to comprehensively mine the PQR data and helps to enhance the process understanding and improve the quality control.
Medicine, Chinese Traditional
;
Drugs, Chinese Herbal
;
Data Mining/methods*
;
Quality Control
;
Technology, Pharmaceutical
5.Technology and principle of improving solubility of Dioscoreae Rhizoma formula granules based on powder modification.
Wei LIAO ; Ding-Kun ZHANG ; Zhi-Ping GUO ; Yu-Hua LIU ; Chun-Li GE ; Yi-Chen SONG ; Jia-Bao LIAO ; Li HAN
China Journal of Chinese Materia Medica 2023;48(8):2138-2145
The powder modification technology was used to improve the powder properties and microstructure of Dioscoreae Rhizoma extract powder, thereby solving the problem of poor solubility of Dioscoreae Rhizoma formula granules. The influence of modifier dosage and grinding time on the solubility of Dioscoreae Rhizoma extract powder was investigated with the solubility as the evaluation index, and the optimal modification process was selected. The particle size, fluidity, specific surface area, and other powder properties of Dioscoreae Rhizoma extract powder before and after modification were compared. At the same time, the changes in the microstructure before and after modification was observed by scanning electron microscope, and the modification principle was explored by combining with multi-light scatterer. The results showed that after adding lactose for powder modification, the solubility of Dioscoreae Rhizoma extract powder was significantly improved. The volume of insoluble substance in the liquid of modified Dioscoreae Rhizoma extract powder obtained by the optimal modification process was reduced from 3.8 mL to 0 mL, and the particles obtained by dry granulation of the modified powder could be completely dissolved within 2 min after being exposed to water, without affecting the content of its indicator components adenosine and allantoin. After modification, the particle size of Dioscoreae Rhizoma extract powder decreased significantly, d_(0.9) decreased from(77.55±4.57) μm to(37.91±0.42) μm, the specific surface area and porosity increased, and the hydrophilicity improved. The main mechanism of improving the solubility of Dioscoreae Rhizoma formula granules was the destruction of the "coating membrane" structure on the surface of starch granules and the dispersion of water-soluble excipients. This study introduced powder modification technology to solve the solubility problem of Dioscoreae Rhizoma formula granules, which provided data support for the improvement of product quality and technical references for the improvement of solubility of other similar varieties.
Powders
;
Solubility
;
Technology, Pharmaceutical
;
Technology
;
Plant Extracts
;
Particle Size
6.Preparation and in vitro evaluation of fused deposition modeling 3D printed compound tablets of captopril and hydrochlorothiazide.
Zhi Sheng LI ; Hao Nan QIAN ; Tian Yuan FAN
Journal of Peking University(Health Sciences) 2022;54(3):572-577
OBJECTIVE:
To explore the feasibility of preparing compound tablets for the treatment of hypertension by fused deposition modeling (FDM) 3D printing technology and to evaluate the quality of the printed compound tablets in vitro.
METHODS:
Polyvinyl alcohol (PVA) filaments were used as the exci-pient to prepare the shell of tablet. The ellipse-shaped tablets (the length of major axes of ellipse was 20 mm, the length of the minor axes of ellipse was 10 mm, the height of tablet was 5 mm) with two separate compartments were designed and printed using FDM 3D printer. The height of layer was 0.2 mm, and the thickness of roof or floor was 0.6 mm. The thickness of shell was 1.2 mm, and the thickness of the partition wall between the two compartments was 0.6 mm. Two cardiovascular drugs, captopril (CTP) and hydrochlorothiazide (HCT), were selected as model drugs for the printed compound tablet and filled in the two compartments of the tablet, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by electronic scale. The hardness of the tablets was measured by a single-column mechanical test system. The contents of the drugs in the tablets were determined by high performance liquid chromatography (HPLC), and the dissolution apparatus was used to measure the in vitro drug release of the tablets.
RESULTS:
The prepared FDM 3D printed compound tablets were all in good shape without printing defects. The average weight of the tablets was (644.3±6.55) mg. The content of CTP and HCT was separately (52.3±0.26) mg and (49.6±0.74) mg. A delayed in vitro release profile was observed for CTP and HCT, and the delayed release time for CTP and HCT in vitro was 20 min and 40 min, respectively. The time for 70% of CTP and HCT released was separately 30 min and 60 min.
CONCLUSION
CTP and HCT compound tablets were successfully prepared by FDM 3D printing technology, and the printed tablets were of good qualities.
Captopril
;
Cytidine Triphosphate
;
Drug Liberation
;
Hydrochlorothiazide
;
Printing, Three-Dimensional
;
Tablets/chemistry*
;
Technology, Pharmaceutical/methods*
7.Irritant toxicity and lectin content of different processed products of Pinelliae Rhizoma.
Yan-Qiu CHENG ; Hong-Li YU ; Hao WU ; Xing-Bao TAO ; Yu-Wei XIE ; Sheng-Jun CHEN ; Ping ZHANG ; Song LI ; Cai-Xia WANG ; He-Peng WANG ; Ping ZENG ; Bing-Bing LIU
China Journal of Chinese Materia Medica 2022;47(17):4627-4633
The present study aims to investigate the correlation between irritant toxicity variation and lectin content variation during the processing of Pinelliae Rhizoma products and to explore the feasibility of Western blot as a method for the detection of lectin. We processed Pinelliae Rhizoma Praeparatum Cum Alumine, Pinelliae Rhizoma Praeparatum, and Pinelliae Rhizoma Praeparatumcum Zingibere et Alumine to different degrees and then analyzed their irritant toxicity via Draize rabbit eye test. Western blot was employed to determine the lectin content in Pinelliae Rhizoma products processed with different methods. The correlation between toxicity variation and lectin content variation was then analyzed. Different decoction pieces of Pinelliae Rhizoma were collected for the determination of lectin content. The three processed products of Pinelliae Rhizoma showed gradually decreased toxicity and lectin content as the processing continued. The decreasing trend of lectin content was consistent with that of irritant toxicity during processing, which indicated that the change in lectin content could reflect the trend of irritant toxicity. No band of lectin appeared in the Western blot of processed products of Pinelliae Rhizoma, which suggested that western blotting can be used for the detection of toxic lectin in the processed products of Pinelliae Rhizoma. Lectin should not be detected in the Pinelliae Rhizoma products processed according to the methods in the Chinese Pharmacopoeia.
Animals
;
Drugs, Chinese Herbal/toxicity*
;
Irritants
;
Lectins
;
Pinellia
;
Rabbits
;
Technology, Pharmaceutical/methods*
8.Ginkgo biloba Ketone Ester Tablets with different release rates prepared by fused deposition modeling 3D printing technology.
Yong-Yuan LI ; Chen CHEN ; Hai-Xia WANG ; Bei-Bei XIANG ; Zheng LI
China Journal of Chinese Materia Medica 2022;47(17):4643-4649
The present study prepared a new type of Ginkgo biloba ketone ester(GBE50) preparation from polyethylene glycol and croscarmellose sodium with good biocompatibility and a certain viscosity by fused deposition modeling(FDM)-type 3D printing technique. Firstly, a cylindrical 3D printing model with a diameter of 9.00 mm and a height of 4.50 mm was established. Subsequently, the 3D-GBE50 preparations with three paths(concentric, zigzag, and grid), different layer heights, and different filling gaps were designed and prepared after the optimization of the proportions of excipients. The morphology, size, chemical properties, and dissolution activity of the 3D-GBE50 preparations were fully characterized and investigated. The results showed that 3D-GBE50 preparations had smooth appearance, clear texture, standard friability, good thermal stability, and stable chemical properties. Moreover, the printing path, layer height, and filling gap were directly related to the release rate of 3D-GBE50 preparations. The dissolution of 3D-GBE50 tablets with zigzag printing path was the fastest, while the dissolution rates of 3D-GBE50 tablets with concentric circle and grid-shaped printing paths were slower than that of commercially available G. biloba Ketone Ester Tablets. In addition, the dissolution of 3D-GBE50 tablets was faster with higher layer height and wider filling gap. As revealed by the results, th FDM-type 3D printing technique can flexibly regulate the drug release activity via controlling the printing parameters, providing effective ideas and methods for the pre-paration of personalized pharmaceutical preparations.
Carboxymethylcellulose Sodium
;
Esters
;
Excipients/chemistry*
;
Ginkgo biloba
;
Ketones
;
Polyethylene Glycols/chemistry*
;
Printing, Three-Dimensional
;
Tablets/chemistry*
;
Technology, Pharmaceutical/methods*
9.Preparation and in vitro evaluation of FDM 3D printed theophylline tablets with personalized dosage.
A KAIDIERYA ; R G ZHANG ; H N QIAN ; Z Y ZOU ; Y DANNIYA ; T Y FAN
Journal of Peking University(Health Sciences) 2022;54(6):1202-1207
OBJECTIVE:
To explore the feasibility of preparing different doses of tablets for personalized treatment by fused deposition modeling (FDM) 3D printing technology, and to evaluate the in vitro quality of the FDM 3D printed tablets.
METHODS:
Three different sizes of hollow tablets were prepared by fused deposition modeling 3D printing technology with polyvinyl alcohol (PVA) filaments. Theophylline was chosen as the model drug. In the study, 20 mg, 50 mg and 100 mg of theophylline was filled into the cavity of the tablets, respectively. The microscopic morphology of the tablets was observed by scanning electron microscopy (SEM). The weight variation of the tablets was investigated by weighing method. The hardness of the tablets was measured by tablet hardness tester. The contents of the drugs in the tablets were determined by ultraviolet and visible spectrophotometry (UV-Vis), and the dissolution apparatus was used to assay the in vitro drug release of the tablets.
RESULTS:
The prepared FDM 3D printed tablets were all in good shape without printing defects. And there was no leakage phenomenon. The diameter and thickness of the tablets were consistent with the design. The layers were tightly connected, and the fine structure of the formulation could be clearly observed without printing defects by scanning electron microscopy. The average weight of the three sizes of tablets was (150.5±2.3) mg, (293.6±2.6) mg and (456.2±5.6) mg, respectively. The weight variation of the three sizes of tablets were boss less than 5%, which met the requirements; The hardness of the tablets all exceeded 200 N; The contents of theophylline in the three tablets were 98.0%, 97.2% and 97.9% of the dosage (20 mg, 50 mg and 100 mg), and the relative standard deviation (RSD) was 1.06%, 1.15% and 0.63% respectively; The time for 80% drug released from the three dosage of tablets was within 30 min.
CONCLUSION
Three different dosages of theophylline tablets were successfully prepared by FDM 3D printing technology in this study. The exploration may bring beneficial for the preparation of personalized dose preparations. We expect that with the development of 3D printing technology, FDM 3D printed personalized tablets can be used in the clinic as soon as possible to provide personalized treatment for patients.
Humans
;
Theophylline/chemistry*
;
Tablets/chemistry*
;
Drug Liberation
;
Printing, Three-Dimensional
;
Polyvinyl Alcohol/chemistry*
;
Technology, Pharmaceutical/methods*
10.Online moisture detection technology and its application prospect in drying of traditional Chinese medicine.
Xue-Cheng WANG ; Ya-Qi WANG ; Yuan-Hui LI ; Shi-Jun XU ; Feng SHAO ; Ying-Zi ZENG ; Zhen-Feng WU ; Ming YANG
China Journal of Chinese Materia Medica 2021;46(1):41-45
Drying is one of the most common unit operations in the production of traditional Chinese medicine. The drying process of traditional Chinese medicine materials is accompanied by the dynamic reduction of water content. As a key index to determine the end of the drying process, the moisture content of materials plays an important role in improving drying efficiency and saving energy. Recently, the drying process of traditional Chinese medicine is mostly monitored by offline detection, and there are few reports of online moisture detection applications. In this paper, the principle and current application of online inspection technology for the material drying process in different fields were introduced. The significance of online detection technology in drying of traditional Chinese medicine was also analyzed. Meanwhile, the application prospect of online detection technology in the field of drying of traditional Chinese medicine was predicted. In response to urgent transformation and upgrading of the traditional Chinese medicine manufacturing industry, the application of online moisture detection technology is expected to be a key breakthrough in the intelligent upgrading of traditional Chinese medicine drying technology and equipment.
Desiccation
;
Drugs, Chinese Herbal
;
Medicine, Chinese Traditional
;
Quality Control
;
Technology, Pharmaceutical

Result Analysis
Print
Save
E-mail