1.Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics.
Protein & Cell 2020;11(10):707-722
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Adoptive Transfer
;
Alveolar Epithelial Cells
;
pathology
;
Animals
;
Apoptosis
;
Betacoronavirus
;
Body Fluids
;
metabolism
;
CD4-Positive T-Lymphocytes
;
immunology
;
Clinical Trials as Topic
;
Coinfection
;
prevention & control
;
therapy
;
Coronavirus Infections
;
complications
;
immunology
;
Disease Models, Animal
;
Endothelial Cells
;
pathology
;
Extracorporeal Membrane Oxygenation
;
Genetic Therapy
;
methods
;
Genetic Vectors
;
administration & dosage
;
therapeutic use
;
Humans
;
Immunity, Innate
;
Inflammation Mediators
;
metabolism
;
Lung
;
pathology
;
physiopathology
;
Mesenchymal Stem Cell Transplantation
;
methods
;
Mesenchymal Stem Cells
;
physiology
;
Multiple Organ Failure
;
etiology
;
prevention & control
;
Pandemics
;
Pneumonia, Viral
;
complications
;
immunology
;
Respiratory Distress Syndrome, Adult
;
immunology
;
pathology
;
therapy
;
Translational Medical Research
2.Mesenchymal stem cells and immune disorders: from basic science to clinical transition.
Shihua WANG ; Rongjia ZHU ; Hongling LI ; Jing LI ; Qin HAN ; Robert Chunhua ZHAO
Frontiers of Medicine 2019;13(2):138-151
As a promising candidate seed cell type in regenerative medicine, mesenchymal stem cells (MSCs) have attracted considerable attention. The unique capacity of MSCs to exert a regulatory effect on immunity in an autologous/allergenic manner makes them an attractive therapeutic cell type for immune disorders. In this review, we discussed the current knowledge of and advances in MSCs, including its basic biological properties, i.e., multilineage differentiation, secretome, and immunomodulation. Specifically, on the basis of our previous work, we proposed three new concepts of MSCs, i.e., "subtotipotent stem cell" hypothesis, MSC system, and "Yin and Yang" balance of MSC regulation, which may bring new insights into our understanding of MSCs. Furthermore, we analyzed data from the Clinical Trials database ( http://clinicaltrials.gov ) on registered clinical trials using MSCs to treat a variety of immune diseases, such as graft-versus-host disease, systemic lupus erythematosus, and multiple sclerosis. In addition, we highlighted MSC clinical trials in China and discussed the challenges and future directions in the field of MSC clinical application.
Cell Differentiation
;
Humans
;
Immune System Diseases
;
immunology
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells
;
immunology
;
physiology
;
Randomized Controlled Trials as Topic
;
Regenerative Medicine
3.Targeting cancer stem cells by using chimeric antigen receptor-modified T cells: a potential and curable approach for cancer treatment.
Yelei GUO ; Kaichao FENG ; Yao WANG ; Weidong HAN
Protein & Cell 2018;9(6):516-526
Cancer stem cells (CSCs), a subpopulation of tumor cells, have self-renewal and multi-lineage differentiation abilities that play an important role in cancer initiation, maintenance, and metastasis. An accumulation of evidence indicates that CSCs can cause conventional therapy failure and cancer recurrence because of their treatment resistance and self-regeneration characteristics. Therefore, approaches that specifically and efficiently eliminate CSCs to achieve a durable clinical response are urgently needed. Currently, treatments with chimeric antigen receptor-modified T (CART) cells have shown successful clinical outcomes in patients with hematologic malignancies, and their safety and feasibility in solid tumors was confirmed. In this review, we will discuss in detail the possibility that CART cells inhibit CSCs by specifically targeting their cell surface markers, which will ultimately improve the clinical response for patients with various types of cancer. A number of viewpoints were summarized to promote the application of CSC-targeted CART cells in clinical cancer treatment. This review covers the key aspects of CSC-targeted CART cells against cancers in accordance with the premise of the model, from bench to bedside and back to bench.
Humans
;
Molecular Targeted Therapy
;
methods
;
Neoplasms
;
immunology
;
pathology
;
therapy
;
Neoplastic Stem Cells
;
pathology
;
Receptors, Chimeric Antigen
;
metabolism
;
T-Lymphocytes
;
immunology
;
metabolism
;
Translational Medical Research
4.Immunoregulatory Effect of Adipose Mesenchymal Stem Cells on Peripheral Blood Lymphocytes in Psoriasis Vulgaris Patients.
Xiu Ping YIN ; Rong Jia ZHU ; Chen ZHUANG ; Shuo WANG ; Chun Hua ZHAO ; Ping SONG
Acta Academiae Medicinae Sinicae 2018;40(6):790-796
Objective To investigate the effect of adipose mesenchymal stem cells(AMSCs) on the peripheral blood lymphocyte(PBL) in psoriasis vulgaris(PV) patients and the expression and secretion profiles of related inflammatory cytokines in the PBL.Methods AMSCs from three PV patients were co-cultured with PBL. Peripheral blood regulatory cells(Treg) and T helper cell 17(Th17)ratio was measured by flow cytometry. The anti- and pro-inflammatory cytokines expressed and secreted by PBL were detected by quantitative real-time polymerase chain reaction(qRT-PCR) and enzyme-linked immunosorbent assay(ELISA).Results The Treg/total lymphocyte ratio was significantly higher in the healthy people AMSCs+PBL co-culture group[(3.2±0.5)%;P=0.001],but AMSCs in patients had a tendency to promote the proliferation of Treg cells [(1.3±0.2)%],with no significant difference(P=0.485) when compared with the PBL culture alone group[(1.0±0.1)%]. qRT-PCR showed that the ability of PBL in expressing Treg transcription factor forkhead box p3 and transforming growth factor(TGF)-Β mRNA was significantly lower in psoriasis AMSCs+PBL co-culture group than in the healthy people AMSCs+PBL co-culture group(P=0.00,P=0.03),AMSCs had a tendency to promote the expression of interlukin(IL)-10 in peripheral blood lymphocytes,but there was no significant difference(P=0.09).ELISA showed the PBL in healthy people AMSCs+PBL co-culture group secreted the anti-inflammatory cytokine IL-10[(156.9±41.8) ng/Μl] and TGF-Β[(2774.1 ± 526.4) ng/Μl];in contrast,the abilities of PBL in PV patient AMSCs+PBL co-culture group in secreting the anti-inflammatory cytokines has a downward trend:IL-10[(90.4±28.8) ng/Μl] and TGF-Β[(1597.9±55.7) ng/Μl],although the differences were not statistically significant. After the co-culture,the proportion of Th17 cells in the psoriasis AMSCs+PBL co-culture group[(0.8±0.3)%] showed a decreasing trend when compared with the PBL culture alone group[(1.1±0.1)%],although the results were not statistically significant. Also,the proportion of Th17 cells showed no significant difference between PV patient AMSCs+PBL co-culture group and healthy people AMSCs+PBL co-culture group. Finally,both the psoriasis AMSCs+PBL co-culture group and the healthy people AMSCs+PBL co-culture group showed no obvious inhibitory effect on the expression and secretion of Th17 transcription factor retinoid-related orphan nuclear receptor Γt and pro-inflammatory cytokines IL-17 and IL-23 in PBL,and there was no significant difference between these two groups.Conclusions AMSCs in PV patients have decreased ability in regulating the anti-inflammatory function of peripheral blood Treg lymphocytes. However,they have no effect on the proinflammatory effect of peripheral blood Th17 lymphocytes.
Adipose Tissue
;
cytology
;
Cytokines
;
immunology
;
Forkhead Transcription Factors
;
immunology
;
Humans
;
Inflammation
;
immunology
;
Mesenchymal Stem Cells
;
cytology
;
Psoriasis
;
immunology
;
T-Lymphocytes, Regulatory
;
immunology
;
Th17 Cells
;
immunology
5.Advanced Properties of Urine Derived Stem Cells Compared to Adipose Tissue Derived Stem Cells in Terms of Cell Proliferation, Immune Modulation and Multi Differentiation.
Hye Suk KANG ; Seock Hwan CHOI ; Bum Soo KIM ; Jae Young CHOI ; Gang Baek PARK ; Tae Gyun KWON ; So Young CHUN
Journal of Korean Medical Science 2015;30(12):1764-1776
Adipose tissue stem cells (ADSCs) would be an attractive autologous cell source. However, ADSCs require invasive procedures, and has potential complications. Recently, urine stem cells (USCs) have been proposed as an alternative stem cell source. In this study, we compared USCs and ADSCs collected from the same patients on stem cell characteristics and capacity to differentiate into various cell lineages to provide a useful guideline for selecting the appropriate type of cell source for use in clinical application. The urine samples were collected via urethral catheterization, and adipose tissue was obtained from subcutaneous fat tissue during elective laparoscopic kidney surgery from the same patient (n = 10). Both cells were plated for primary culture. Cell proliferation, colony formation, cell surface markers, immune modulation, chromosome stability and multi-lineage differentiation were analyzed for each USCs and ADSCs at cell passage 3, 5, and 7. USCs showed high cell proliferation rate, enhanced colony forming ability, strong positive for stem cell markers expression, high efficiency for inhibition of immune cell activation compared to ADSCs at cell passage 3, 5, and 7. In chromosome stability analysis, both cells showed normal karyotype through all passages. In analysis of multi-lineage capability, USCs showed higher myogenic, neurogenic, and endogenic differentiation rate, and lower osteogenic, adipogenic, and chondrogenic differentiation rate compared to ADSCs. Therefore, we expect that USC can be an alternative autologous stem cell source for muscle, neuron and endothelial tissue reconstruction instead of ADSCs.
Adult Stem Cells/*cytology/*immunology/transplantation
;
Biomarkers/metabolism
;
Cell Differentiation
;
Cell Lineage
;
Cell Proliferation
;
Cell Separation
;
Chromosomal Instability
;
Colony-Forming Units Assay
;
Humans
;
Karyotyping
;
Multipotent Stem Cells/cytology/immunology/transplantation
;
Subcutaneous Fat, Abdominal/*cytology
;
Transplantation, Autologous
;
Urine/*cytology
6.Angiogenic factors are associated with development of acute graft-versus-host disease after allogeneic hematopoietic stem cell transplantation.
Di-min NIE ; Qiu-ling WU ; Xia-xia ZHU ; Ran ZHANG ; Peng ZHENG ; Jun FANG ; Yong YOU ; Zhao-dong ZHONG ; Ling-hui XIA ; Mei HONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):694-699
Acute graft-versus-host disease (aGVHD) is a serious complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, the mechanisms of aGVHD are not well understood. We aim to investigate the roles of the three angiogenic factors: angiopoietin-1 (Ang-1), Ang-2 and vascular endothelial growth factor (VEGF) in the development of aGVHD. Twenty-one patients who underwent allo-HSCT were included in our study. The dynamic changes of Ang-1, Ang-2 and VEGF were monitored in patients before and after allo-HSCT. In vitro, endothelial cells (ECs) were treated with TNF-β in the presence or absence of Ang-1, and then the Ang-2 level in the cell culture medium and the tubule formation by ECs were evaluated. After allo-HSCT, Ang-1, Ang-2 and VEGF all exhibited significant variation, suggesting these factors might be involved in the endothelial damage in transplantation. Patients with aGVHD had lower Ang-1 level at day 7 but higher Ang-2 level at day 21 than those without aGVHD, implying that Ang-1 may play a protective role in early phase yet Ang-2 is a promotion factor to aGVHD. In vitro, TNF-β promoted the release of Ang-2 by ECs and impaired tubule formation of ECs, which were both weakened by Ang-1, suggesting that Ang-1 may play a protective role in aGVHD by influencing the secretion of Ang-2, consistent with our in vivo tests. It is concluded that monitoring changes of these factors following allo-HSCT might help to identify patients at a high risk for aGVHD.
Acute Disease
;
Adolescent
;
Adult
;
Angiogenesis Inducing Agents
;
immunology
;
metabolism
;
pharmacology
;
Angiopoietin-1
;
genetics
;
immunology
;
pharmacology
;
Angiopoietin-2
;
genetics
;
immunology
;
pharmacology
;
Antineoplastic Agents
;
therapeutic use
;
Female
;
Gene Expression Regulation, Neoplastic
;
Graft vs Host Disease
;
genetics
;
immunology
;
pathology
;
Hematopoietic Stem Cell Transplantation
;
Human Umbilical Vein Endothelial Cells
;
cytology
;
drug effects
;
immunology
;
Humans
;
Leukemia, Myeloid
;
genetics
;
immunology
;
pathology
;
therapy
;
Lymphoma, Non-Hodgkin
;
genetics
;
immunology
;
pathology
;
therapy
;
Male
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma
;
genetics
;
immunology
;
pathology
;
therapy
;
Retrospective Studies
;
Signal Transduction
;
Transplantation, Homologous
;
Tumor Necrosis Factor-alpha
;
pharmacology
;
Vascular Endothelial Growth Factor A
;
genetics
;
immunology
7.Umbilical cord blood-derived mesenchymal stem cells ameliorate graft-versus-host disease following allogeneic hematopoietic stem cell transplantation through multiple immunoregulations.
Qiu-Ling WU ; Xiao-Yun LIU ; Di-Min NIE ; Xia-Xia ZHU ; Jun FANG ; Yong YOU ; Zhao-Dong ZHONG ; Ling-Hui XIA ; Mei HONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(4):477-484
Although mesenchymal stem cells (MSCs) are increasingly used to treat graft-versus-host disease (GVHD), their immune regulatory mechanism in the process is elusive. The present study aimed to investigate the curative effect of third-party umbilical cord blood-derived human MSCs (UCB-hMSCs) on GVHD patients after allogeneic hematopoietic stem cell transplantation (allo-HSCT) and their immune regulatory mechanism. Twenty-four refractory GVHD patients after allo-HSCT were treated with UCB-hMSCs. Immune cells including T lymphocyte subsets, NK cells, Treg cells and dendritic cells (DCs) and cytokines including interleukin-17 (IL-17) and tumor necrosis factor-alpha (TNF-α) were monitored before and after MSCs transfusion. The results showed that the symptoms of GVHD were alleviated significantly without increased relapse of primary disease and transplant-related complications after MSCs transfusion. The number of CD3(+), CD3(+)CD4(+) and CD3(+)CD8(+) cells decreased significantly, and that of NK cells remained unchanged, whereas the number of CD4(+) and CD8(+) Tregs increased and reached a peak at 4 weeks; the number of mature DCs, and the levels of TNF-α and IL-17 decreased and reached a trough at 2 weeks. It was concluded that MSCs ameliorate GVHD and spare GVL effect via immunoregulations.
Adolescent
;
Adult
;
Cord Blood Stem Cell Transplantation
;
methods
;
Cytokines
;
metabolism
;
Dendritic Cells
;
metabolism
;
Female
;
Graft vs Host Disease
;
immunology
;
therapy
;
Hematopoietic Stem Cell Transplantation
;
adverse effects
;
Humans
;
Immunomodulation
;
Killer Cells, Natural
;
metabolism
;
Male
;
T-Lymphocyte Subsets
;
metabolism
;
Transplantation, Homologous
;
adverse effects
;
Young Adult
8.Mesenchymal stem cell therapy for liver fibrosis.
Young Woo EOM ; Kwang Yong SHIM ; Soon Koo BAIK
The Korean Journal of Internal Medicine 2015;30(5):580-589
Currently, the most effective treatment for end-stage liver fibrosis is liver transplantation; however, transplantation is limited by a shortage of donor organs, surgical complications, immunological rejection, and high medical costs. Recently, mesenchymal stem cell (MSC) therapy has been suggested as an effective alternate approach for the treatment of hepatic diseases. MSCs have the potential to differentiate into hepatocytes, and therapeutic value exists in their immune-modulatory properties and secretion of trophic factors, such as growth factors and cytokines. In addition, MSCs can suppress inflammatory responses, reduce hepatocyte apoptosis, increase hepatocyte regeneration, regress liver fibrosis and enhance liver functionality. Despite these advantages, issues remain; MSCs also have fibrogenic potential and the capacity to promote tumor cell growth and oncogenicity. This paper summarizes the properties of MSCs for regenerative medicine and their therapeutic mechanisms and clinical application in the treatment of liver fibrosis. We also present several outstanding risks, including their fibrogenic potential and their capacity to promote pre-existing tumor cell growth and oncogenicity.
Animals
;
Cell Differentiation
;
Cell Proliferation
;
Hepatocytes/immunology/metabolism/pathology/*transplantation
;
Humans
;
Liver/immunology/metabolism/pathology/physiopathology/*surgery
;
Liver Cirrhosis/diagnosis/immunology/metabolism/physiopathology/*surgery
;
Liver Regeneration
;
*Mesenchymal Stem Cell Transplantation/adverse effects
;
*Mesenchymal Stromal Cells/immunology/metabolism/pathology
;
Phenotype
;
Regenerative Medicine/*methods
;
Risk Factors
;
Signal Transduction
;
Treatment Outcome
9.Understanding of molecular mechanisms in natural killer cell therapy.
Suk Ran YOON ; Tae Don KIM ; Inpyo CHOI
Experimental & Molecular Medicine 2015;47(2):e141-
Cancer cells and the immune system are closely related and thus influence each other. Although immune cells can suppress cancer cell growth, cancer cells can evade immune cell attack via immune escape mechanisms. Natural killer (NK) cells kill cancer cells by secreting perforins and granzymes. Upon contact with cancer cells, NK cells form immune synapses to deliver the lethal hit. Mature NK cells are differentiated from hematopoietic stem cells in the bone marrow. They move to lymph nodes, where they are activated through interactions with dendritic cells. Interleukin-15 (IL-15) is a key molecule that activates mature NK cells. The adoptive transfer of NK cells to treat incurable cancer is an attractive approach. A certain number of activated NK cells are required for adoptive NK cell therapy. To prepare these NK cells, mature NK cells can be amplified to obtain sufficient numbers of NK cells. Alternatively, NK cells can be differentiated and amplified from hematopoietic stem cells. In addition, the selection of donors is important to achieve maximal efficacy. In this review, we discuss the overall procedures and strategies of NK cell therapy against cancer.
Cell Differentiation
;
*Cell- and Tissue-Based Therapy
;
Gene Expression Regulation
;
Hematopoietic Stem Cells/cytology/metabolism
;
Humans
;
*Immunotherapy, Adoptive
;
Killer Cells, Natural/cytology/*immunology/*metabolism
;
Lymphocyte Activation/immunology
;
Signal Transduction
10.Defectiveness of bone marrow mesenchymal stem cells in acquired aplastic anemia.
Jing-Liao ZHANG ; Xiao-Fan ZHU
Chinese Journal of Contemporary Pediatrics 2015;17(1):100-106
The defectiveness of bone marrow mesenchymal stem cells (BM-MSCs) in acquired aplastic anemia (AA) has been a frequent research topic in recent years. This review summarizes the defectiveness of BM-MSCs which is responsible for the mechanism of acquired AA and the prospective application of BM-MSCs in the treatment of acquired AA. An increasingly number of laboratory statistics has demonstrated that the defectiveness of BM-MSCs is more likely to play an important role in the pathogenesis of AA, namely, the apparently different biological characteristics and gene expression profiles, the decreased ability of supporting hematopoiesis as well as self-renewal and differentiation, and the exhaustion of regulating immune response of hematopoietic environment. Those abnormalities continuously prompt AA to become irreversible bone marrow failure along with the imbalanced immunity. With deepening research on MSCs, infusion of MSCs for the primary purpose of recovering hematopoietic microenvironment may become a new approach for the treatment of AA.
Anemia, Aplastic
;
etiology
;
immunology
;
therapy
;
Bone Marrow
;
Cell Differentiation
;
Cell Proliferation
;
Cytokines
;
analysis
;
Humans
;
Lymphocyte Activation
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stromal Cells
;
physiology
;
T-Lymphocytes, Regulatory
;
immunology

Result Analysis
Print
Save
E-mail