1.Effects of rumen microorganisms on the decomposition of recycled straw residue.
Kailun SONG ; Zicheng ZHOU ; Jinhai LENG ; Songwen FANG ; Chunhuo ZHOU ; Guorong NI ; Lichun KANG ; Xin YIN
Journal of Zhejiang University. Science. B 2023;24(4):336-344
		                        		
		                        			
		                        			Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Rumen/metabolism*
		                        			;
		                        		
		                        			Agriculture/methods*
		                        			;
		                        		
		                        			Soil/chemistry*
		                        			;
		                        		
		                        			Microbiota
		                        			;
		                        		
		                        			Bacteria/metabolism*
		                        			;
		                        		
		                        			Oryza/metabolism*
		                        			;
		                        		
		                        			Soil Microbiology
		                        			;
		                        		
		                        			Cellulose
		                        			
		                        		
		                        	
2.The structure and function analysis of bacterial community during aerobic composting of chicken manure.
Yangyang ZHAO ; Yinshuang LIU ; Hongjin NIU ; Zhenhua JIA ; Zaixing LI ; Xiaobo CHEN ; Yali HUANG
Chinese Journal of Biotechnology 2023;39(3):1175-1187
		                        		
		                        			
		                        			In order to determine the changes of bacterial community structure and function in the early, middle and late stage of aerobic composting of chicken manure, high-throughput sequencing and bioinformatics methods were used to determine and analyze the 16S rRNA sequence of samples at different stages of composting. Wayne analysis showed that most of the bacterial OTUs in the three composting stages were the same, and only about 10% of the operational taxonomic units (OTUs) showed stage specificity. The diversity indexes including Ace, Chao1 and Simpson showed a trend of increasing at first, followed by decreasing. However, there was no significant difference among different composting stages (P < 0.05). The dominant bacteria groups in three composting stages were analyzed at the phylum and genus levels. The dominant bacteria phyla at three composting stages were the same, but the abundances were different. LEfSe (line discriminant analysis (LDA) effect size) method was used to analyze the bacterial biological markers with statistical differences among three stages of composting. From the phylum to genus level, there were 49 markers with significant differences among different groups. The markers included 12 species, 13 genera, 12 families, 8 orders, 1 boundary, and 1 phylum. The most biomarkers were detected at early stage while the least biomarkers were detected at late stage. The microbial diversity was analyzed at the functional pathway level. The function diversity was the highest in the early stage of composting. Following the composting, the microbial function was enriched relatively while the diversity decreased. This study provides theoretical support and technical guidance for the regulation of livestock manure aerobic composting process.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Manure/microbiology*
		                        			;
		                        		
		                        			Chickens/genetics*
		                        			;
		                        		
		                        			Composting
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S/genetics*
		                        			;
		                        		
		                        			Soil
		                        			;
		                        		
		                        			Bacteria/genetics*
		                        			
		                        		
		                        	
3.Variation and interaction mechanism between active components in Rheum officinale and rhizosphere soil microorganisms under drought stress.
Feng-Pu XIE ; Nan WANG ; Jing GAO ; Gang ZHANG ; Zhong-Xing SONG ; Yuan-Yuan LI ; Ya-Li ZHANG ; Duo-Yi WANG ; Rui LI ; Mi-Mi LIU ; Zhi-Shu TANG
China Journal of Chinese Materia Medica 2023;48(6):1498-1509
		                        		
		                        			
		                        			To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.
		                        		
		                        		
		                        		
		                        			Rhizosphere
		                        			;
		                        		
		                        			Rheum
		                        			;
		                        		
		                        			Droughts
		                        			;
		                        		
		                        			Soil
		                        			;
		                        		
		                        			Catechin
		                        			;
		                        		
		                        			Emodin
		                        			;
		                        		
		                        			Bacteria/metabolism*
		                        			;
		                        		
		                        			Water/metabolism*
		                        			;
		                        		
		                        			Firmicutes
		                        			;
		                        		
		                        			Soil Microbiology
		                        			
		                        		
		                        	
4.Correlation between rhizosphere environment and content of medicinal components of Arnebia euchroma.
Ji-Zhao ZHANG ; Yuan-Jin QIU ; Ya-Qin ZHAO ; Yu YE ; Guo-Ping WANG ; Jun ZHU ; Xiao-Jin LI ; Cong-Zhao FAN
China Journal of Chinese Materia Medica 2023;48(22):6030-6038
		                        		
		                        			
		                        			This study aimed to explore the correlation between rhizosphere soil microorganisms of wild Arnebia euchroma and the content of medicinal components to provide guidance for the selection of the ecological planting base. The total DNA of rhizosphere soil microorganisms of wild A. euchroma was extracted, and the microbial community structure of rhizosphere soil microorganisms was analyzed by IlluminaMiseq high-throughput sequencing technology. The content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin in medicinal materials was determined by high-performance liquid chromatography(HPLC). The physicochemical pro-perties of rhizosphere soil of wild A. euchroma in main producing areas were determined, and the correlation of soil microbial abundance with index component content and soil physicochemical properties was analyzed by SPSS software. The results showed that the species composition of rhizosphere fungi and bacteria in A. euchroma from different habitats was similar at the phylum and genus levels, but their relative abundance, richness index(Chao1), and community diversity(Simpson) index were different. Correlation analysis showed that the content of available phosphorus in soil was positively correlated with the content of total hydroxynaphthoquinone pigment and β,β'-dimethylacrylalkannin, and the abundance of five fungal genera such as Solicoccozyma and six bacterial genera such as Pseudo-nocardia and Bradyrhizobium was positively correlated with the content of medicinal components in medicinal materials. The abundance of Bradyrhizobium was significantly positively correlated with the content of β,β'-dimethylacrylalkanin. The abundance of fungi such as Archaeorhizomyces was significantly positively correlated with the content of available phosphorus in rhizosphere soil, and Bradyrhizobium was significantly negatively correlated with soil pH. Therefore, the abundance of fungi and bacteria in the rhizosphere of A. euchroma has a certain correlation with the medicinal components and the physicochemical properties of the rhizosphere soil, which can provide a scientific basis for the selection of ecological planting bases in the later stage.
		                        		
		                        		
		                        		
		                        			Rhizosphere
		                        			;
		                        		
		                        			Soil Microbiology
		                        			;
		                        		
		                        			Bacteria/genetics*
		                        			;
		                        		
		                        			Phosphorus
		                        			;
		                        		
		                        			Soil
		                        			;
		                        		
		                        			Boraginaceae
		                        			
		                        		
		                        	
5.Oil palm intercropping system: A potential nature-based solution to improve soil biology activities in North Sumatra plantation, Indonesia
Fadilla Sapalina ; Rana Farrasati ; Dhimas Wiratmoko ; Suroso Rahutomo ; Heri Santoso ; Eko Noviandi Ginting ; Iput Pradiko ; Fandi Hidayat
Malaysian Journal of Microbiology 2022;18(2):235-241
		                        		
		                        			Aims:
		                        			Intercropping system in oil palm plantation is recognized as one of a nature-based solution as well as a promising sustainable practice. This study aimed to observe the advantages of existing intercropping system in one of North Sumatra’s oil palm plantation. It is achieved by analyzing the population of soil bacteria and fungi in oil palm intercropping fields with sorghum and cassava, compared with the non-intercropping field that using Mucuna bracteata (MB) as a common legume cover crop in oil palm plantations.
		                        		
		                        			Methodology and results:
		                        			Soil samples were collected from the weeded circle and windrow area (the area between palms within the row). The results showed that the highest and the lowest soil bacteria populations were in sorghum (1.7 ± 1.4 × 108 CFU/g) and MB (1.7 ± 0.4 × 107 CFU/g), while the highest and the lowest soil fungi populations were in sorghum (4.3 ± 2.9 × 106 CFU/g) and cassava (2.1 ± 0.8 × 106 CFU/g).
		                        		
		                        			Conclusion, significance and impact of study
		                        			The intercropping system in this study showed a significant difference in the bacteria population, while the fungi population had no difference compared to the non-intercropping system. The bacterial and fungi population results also indicate that the intercropping system potentially enhances the soil's biological activity as an indicator of improved soil health. It is also followed by a slightly higher soil organic carbon value in intercropping system. This research suggests that further studies should be done to identify specific soil functional microbes (nutrients fixers and solubilizers). The future research will be used as a reference for promising biofertilizer agents in supporting sustainable crop production.
		                        		
		                        		
		                        		
		                        			Palm Oil
		                        			;
		                        		
		                        			 Soil Microbiology
		                        			
		                        		
		                        	
6.Mycosynthesis of thermostable silver nanoparticles by the endophytic Albifimbria verrucaria with antimicrobial and antiproliferative activities
Mina Nasry Zaky ; Noha Mohamed Abd Elhameed ; Adel A. El Mehalawy ; Samar Samir Mohamed
Malaysian Journal of Microbiology 2022;18(4):354-369
		                        		
		                        			Aims:
		                        			This study was aimed to screen and isolate soil and endophytic fungi with the ability to biosynthesize stable silver nanoparticles (SNPs) with antimicrobial and antiproliferative activities.
		                        		
		                        			Methodology and results:
		                        			A total of 60 fungal isolates isolated from soil and plant samples were screened for their ability to biosynthesize SNPs. Among which, 21 isolates have supported the biosynthesis of SNPs. Furthermore, the endophytic isolate PRR2.1 synthesized highly thermostable SNPs with long shelf life. The PRR2.1 isolate was identified as Albifimbria verrucaria by morphological and molecular means. The synthesis of SNPs was initially monitored by UV-Vis spectroscopy. Further characterization by transmission electron microscopy, X-ray diffraction and dynamic light scattering revealed well-dispersed spherical crystalline in nature SNPs with a mean size of 14 nm and zeta potential of –24.47 mV. Fourier transform infrared spectroscopy showed the presence of biomolecules adsorbed on the surface of biosynthesized SNPs responsible for their synthesis and stability. The mycosynthesized SNPs exhibited stronger antifungal activity against pathogenic strains of Aspergillus niger, A. flavus, A. fumigatus and Candida albicans with respect to its antibacterial activity against Escherichia coli, Staphylococcus aureus, Bacillus cereus and Klebsiella pneumoniae compared to standard antifungal itraconazole and antibiotic cefadroxil with mostly consistent minimum inhibitory concentration of 5.31 μg/mL. The biosynthesized SNPs demonstrated dose-dependent in vitro antiproliferative activity against cancerous HeLa cell line with IC50 value of 2.52 μg/mL and less cytotoxic activity against WI-38 (normal human lung fibroblasts) cell line with CC50 value of 10.2 μg/mL.
		                        		
		                        			Conclusion, significance and impact of study
		                        			These results show the potential of endophytic fungi biosynthesized SNPs as possible biofriendly, safe and efficient antimicrobial agents with promising antiproliferative activity and low cytotoxicity, which can be furtherly implemented in various biomedical and biotechnological applications.
		                        		
		                        		
		                        		
		                        			Silver
		                        			;
		                        		
		                        			 Nanoparticles
		                        			;
		                        		
		                        			 Soil Microbiology
		                        			;
		                        		
		                        			 Endophytes
		                        			;
		                        		
		                        			 Anti-Infective Agents
		                        			;
		                        		
		                        			 
		                        			
		                        		
		                        	
7.Suppression and management of Meloidogyne incognita in soil using Trichoderma harzianum NFCF160 and Trichoderma virens Isf-77
Nithini Rajakaruna ; Lanka Undugoda ; Sagarika Kannangara ; Krishanthi Abeywickrama
Malaysian Journal of Microbiology 2022;18(4):424-431
		                        		
		                        			Aims:
		                        			Meloidogyne incognita adversely affects numerous crop plants worldwide. Therefore, the modern world has been moving towards biocontrol methods to prevent nematode attacks. This study was aimed to (i) investigate the potential use of Trichoderma harzianum NFCF160 and T. virens Isf-77 in managing M. incognita in soil and (ii) identify trapping mechanisms employed by both Trichoderma strains to suppress M. incognita.
		                        		
		                        			Methodology and results:
		                        			Three weeks old, Basella alba L. plants were subjected to five different treatments. The above and below ground growth parameters and the galling indices of these plants were measured every four weeks for three sampling times. Trapping mechanisms employed by Trichoderma strains were examined following plate assays. Plants treated with T. harzianum NFCF160 and T. virens Isf-77 had significantly higher values for the total number of leaves (34 ± 2.84) and (27 ± 2.61), fresh weight of the shoot (81 ± 9.51 g) and (91 ± 9.70 g), dry weight of the shoot (71 ± 5.24 g) and (62 ± 5.81 g), respectively eight weeks after inoculation of M. incognita. Significantly low galling indices (2 and 2) were recorded in B. alba treated with Trichoderma strains. Both Trichoderma strains exhibited various nematode-trapping mechanisms, such as non-constricting rings and adhesive spores.
		                        		
		                        			Conclusion, significance and impact of study
		                        			This investigation highlighted the potential of both Trichoderma strains as biocontrol agents to control M. incognita effect in sustainable agriculture.
		                        		
		                        		
		                        		
		                        			Tylenchoidea
		                        			;
		                        		
		                        			 Trichoderma
		                        			;
		                        		
		                        			 Soil Microbiology
		                        			
		                        		
		                        	
8.Correlation analysis between continuous cropping obstacle of Gastrodia elata and Ilyonectria fungi and relieving strategy.
Jin-Qiang ZHANG ; Xin TANG ; Lan-Ping GUO ; Ye YANG ; Yan-Hong WANG ; Yuan WEI ; Da-Peng SU ; Hua HE ; Liang-Yuan LI ; Zhen OUYANG ; Tao ZHOU
China Journal of Chinese Materia Medica 2022;47(9):2296-2303
		                        		
		                        			
		                        			The continuous cropping obstacle of Gastrodia elata is outstanding, but its mechanism is still unclear. In this study, microbial changes in soils after G. elata planting were investigated to explore the mechanism correlated with continuous cropping obstacle. The changes of species and abundance of fungi and bacteria in soils planted with G. elata after 1, 2, and 3 years were compared. The pathogenic fungi that might cause continuous cropping diseases of G. elata were isolated. Finally, the prevention and control measures of soil-borne fungal diseases of G. elata were investigated with the rotation planting pattern of "G. elata-Phallus impudicus". The results showed that G. elata planting resulted in the decrease in bacterial and fungal community stability and the increase in harmful fungus species and abundance in soils. This change was most obvious in the second year after G. elata planting, and the soil microbial community structure could not return to the normal level even if it was left idle for another two years. After G. elata planting in soils, the most significant change was observed in Ilyonectria cyclaminicola. The richness of the Ilyonectria fungus in soils was significantly positively correlated with the incidence of G. elata diseases. When I. cyclaminicola was inoculated in the sterile soil, the rot rate of G. elata was also significantly increased. After planting one crop of G. elata and one to three crops of P. impudicus, the fungus community structure in soils gradually recovered, and the abundance of I. cyclaminicola decreased year by year. Furthermore, the disease rate of G. elata decreased. The results showed that the cultivation of G. elata made the Ilyonectria fungi the dominant flora in soils, and I. cyclaminicola served as the main pathogen of continuous cropping diseases of G. elata, which could be reduced by rotation planting with P. impudicus.
		                        		
		                        		
		                        		
		                        			Bacteria
		                        			;
		                        		
		                        			Fungi
		                        			;
		                        		
		                        			Gastrodia/microbiology*
		                        			;
		                        		
		                        			Mycobiome
		                        			;
		                        		
		                        			Soil
		                        			;
		                        		
		                        			Soil Microbiology
		                        			
		                        		
		                        	
9.Geolocation Inference of Forensic Individual Origin by Soil Metagenomic Analysis.
Wen Li LIU ; Feng CHENG ; Jia Lin QIAN ; Chen FANG ; Xu LIU ; Qing Wei FAN ; Hui Juan WU ; Jiang Wei YAN
Journal of Forensic Medicine 2021;37(3):366-371
		                        		
		                        			
		                        			Objective To preliminarily discuss the feasibility of geolocation inference of forensic individual origin by soil metagenomic analysis. Methods The 33 soil samples from Heilongjiang, Qinghai and Tibet were collected, total bacterial DNA in the samples were extracted, and universal primers were used to amplify the V3 and V4 hypervariable region of bacterial 16S rDNA. The region was sequenced by high-throughput sequencing (HTS) with the MiSeq sequencer. Bioinformatics analysis such as species composition and sample comparison was performed on sequencing data. The richness index and diversity index were calculated based on operational taxonomic unit (OTU) results. Results A total of 2 720 149 sequences were generated by sequencing. Those sequences were clustered into 114 848 OTUs. The Chao1 indexes of soil microorganisms in Heilongjiang, Qinghai, and Tibet were 797.45, 745.11 and 535.98, respectively, and Shannon indexes were 6.46, 6.36 and 6.25, respectively. The number of bacterial species and the community diversity in the soil from high to low were Heilongjiang > Qinghai > Tibet. The composition of soil bacteria in three provinces at various classification levels were obtained, the dominant genuses in Heilongjiang were Chthoniobacteraceae DA101 and an unannotated genus of Thermogemmatisporaceae; the dominant genuses in Qinghai were an unannotated genus of Cytophagaceae and an unannotated genus of Nocardioidaceae; the dominant genuses in Tibet were an unannotated genus of Comamonadaceae and Verrucomicrobiaceae Luteolibacter. The results of principal co-ordinates analysis demonstrated that, according to the weighted UniFrac analysis, the three principle components represented 56.36% of the total variable, and according to the unweighted UniFrac analysis, the three principle components represented 34.81% of the total variable. The samples from the same province could be clustered together, and the species and content of soil microorganisms from different provinces were significantly different. Conclusion Based on the metagenomic analysis method, soil samples from different regions can be effectively distinguished, which has potential application value in geolocation inference of forensic individual origin in the future.
		                        		
		                        		
		                        		
		                        			Bacteria/genetics*
		                        			;
		                        		
		                        			High-Throughput Nucleotide Sequencing
		                        			;
		                        		
		                        			RNA, Ribosomal, 16S/genetics*
		                        			;
		                        		
		                        			Soil
		                        			;
		                        		
		                        			Soil Microbiology
		                        			
		                        		
		                        	
10.Metagenomic analysis of the diversity of microbes in the Napahai plateau wetland and their carbon and nitrogen metabolisms.
Zhiwei XU ; Xuemei CHEN ; Yunlin WEI ; Qi ZHANG ; Xiuling JI
Chinese Journal of Biotechnology 2021;37(9):3276-3292
		                        		
		                        			
		                        			Due to the special geographical location and the complex ecosystem types, plateau wetlands play important ecological roles in water supply, greenhouse gas regulation and biodiversity preservation. Napahai plateau wetland is a special wetland type with low latitude and high altitude, and its microbial diversity was rarely studied. The diversity of microbial communities in the Napahai plateau wetland was analyzed using metagenomics method. Among the microbes detected, 184 phyla, 3 262 genera and 24 260 species belong to the bacterial domain, 13 phyla and 32 genera belong to the archaeal domain, and 13 phyla and 47 genera belong to the fungal domain. Significant differences in species diversity between soil and water were observed. Acidobacteria, Proteobacteria and Actinobacteria were dominant phyla in soil, while Proteobacteria and Bacteroides were dominant phyla in water. Since the carbon and nitrogen metabolism genes were abundant, the pathways of carbon fixation and nitrogen metabolism were analyzed. Calvin cycle, reductive tricarboxylic acid cycle and 3-hydroxypropionic acid cycle were the main carbon fixation pathways, while Proteobacteria, Chloroflexi, and Crenarchaeota were the main carbon-fixing bacteria group. As for the nitrogen cycle, nitrogen fixation and dissimilatory nitrate reduction were dominant in water, while nitrification and denitrification were dominant in soil. Proteobacteria, Nitrospirae, Verrucomicrobia, Actinobacteria, Thaumarchaeota and Euryarchaeota contributed to the nitrogen cycle. The study on microbial diversity of Napahai plateau wetlands provides new knowledge for the comprehensive management and protection of wetland environment in China.
		                        		
		                        		
		                        		
		                        			Carbon
		                        			;
		                        		
		                        			Ecosystem
		                        			;
		                        		
		                        			Metagenomics
		                        			;
		                        		
		                        			Nitrogen
		                        			;
		                        		
		                        			Soil Microbiology
		                        			;
		                        		
		                        			Wetlands
		                        			
		                        		
		                        	
            

Result Analysis
Print
Save
E-mail