1.Transcriptional activation of glucose transporter 1 in orthodontic tooth movement-associated mechanical response.
Yu WANG ; Qian LI ; Fuliang LIU ; Shanshan JIN ; Yimei ZHANG ; Ting ZHANG ; Yunyan ZHU ; Yanheng ZHOU
International Journal of Oral Science 2018;10(3):27-27
		                        		
		                        			
		                        			The interplay between mechanoresponses and a broad range of fundamental biological processes, such as cell cycle progression, growth and differentiation, has been extensively investigated. However, metabolic regulation in mechanobiology remains largely unexplored. Here, we identified glucose transporter 1 (GLUT1)-the primary glucose transporter in various cells-as a novel mechanosensitive gene in orthodontic tooth movement (OTM). Using an in vivo rat OTM model, we demonstrated the specific induction of Glut1 proteins on the compressive side of a physically strained periodontal ligament. This transcriptional activation could be recapitulated in in vitro cultured human periodontal ligament cells (PDLCs), showing a time- and dose-dependent mechanoresponse. Importantly, application of GLUT1 specific inhibitor WZB117 greatly suppressed the efficiency of orthodontic tooth movement in a mouse OTM model, and this reduction was associated with a decline in osteoclastic activities. A mechanistic study suggested that GLUT1 inhibition affected the receptor activator for nuclear factor-κ B Ligand (RANKL)/osteoprotegerin (OPG) system by impairing compressive force-mediated RANKL upregulation. Consistently, pretreatment of PDLCs with WZB117 severely impeded the osteoclastic differentiation of co-cultured RAW264.7 cells. Further biochemical analysis indicated mutual regulation between GLUT1 and the MEK/ERK cascade to relay potential communication between glucose uptake and mechanical stress response. Together, these cross-species experiments revealed the transcriptional activation of GLUT1 as a novel and conserved linkage between metabolism and bone remodelling.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Biomechanical Phenomena
		                        			;
		                        		
		                        			Blotting, Western
		                        			;
		                        		
		                        			Bone Remodeling
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Glucose Transporter Type 1
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Hydroxybenzoates
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			MAP Kinase Signaling System
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Periodontal Ligament
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Reverse Transcriptase Polymerase Chain Reaction
		                        			;
		                        		
		                        			Tooth Movement Techniques
		                        			;
		                        		
		                        			Transcriptional Activation
		                        			
		                        		
		                        	
2.Puerarin prevents bone loss in ovariectomized mice and inhibits osteoclast formation in vitro.
Si-Yuan YUAN ; Tong SHENG ; Lian-Qi LIU ; Yun-Ling ZHANG ; Xue-Mei LIU ; Tao MA ; Hong ZHENG ; Yan YAN ; Yoshiko ISHIMI ; Xin-Xiang WANG
Chinese Journal of Natural Medicines (English Ed.) 2016;14(4):265-269
		                        		
		                        			
		                        			The present study aimed at investigating the effects of Puerarin (PR), a major isoflavonoid isolated from the Chinese medicinal herb Puerariae radix, on bone metabolism and the underlying mechanism of action. The in vivo assay, female mice were ovariectomized (OVX), and the OVX mice were fed with a diet containing low, middle, and high doses of PR (2, 4, and 8 mg·d(-1), respectively) or 17β-estradiol (E2, 0.03 μg·d(-1)) for 4 weeks. In OVX mice, the uterine weight declined, and intake of PR at any dose did not affect uterine weight, compared with the control. The total femoral bone mineral density (BMD) was significantly reduced by OVX, which was reversed by intake of the diet with PR at any dose, especially at the low dose. In the in vitro assay, RAW264.7 cells were used for studying the direct effect of PR on the formation of osteoclasts. PR reduced the formation of tartrate resistant acid phosphatase (TRAP)-positive multi-nucleated cells in the RAW 264.7 cells induced by receptor activator for nuclear factor-κB Ligand (RANKL). MC3T3-E1 cells were used for studying the effects of PR on the expression of osteoprotegerin (OPG) and RANKL mRNA expression in osteoblasts. The expression of OPG mRNA and RANKL mRNA was detected by RT-PCR on Days of 5, 7, 10, and 12 after PR exposure. PR time-dependently enhanced the expression of OPG mRNA and reduced the expression of RANKL mRNA in MC3T3-E1 cells. In conclusion, our results suggest that PR can effectively prevent bone loss in OVX mice without any hyperplastic effect on the uterus, and the antiosteoporosis activity of PR may be related to its effects on the formation of osteoclasts and the expression of RANKL OPG in osteoblasts.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Density
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Drugs, Chinese Herbal
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Femur
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			growth & development
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Isoflavones
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Osteoclasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Osteoporosis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			physiopathology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Ovariectomy
		                        			;
		                        		
		                        			Pueraria
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
3.Role of inhibition of osteogenesis function by Sema4D/Plexin-B1 signaling pathway in skeletal fluorosis in vitro.
Xiao-li LIU ; Jing SONG ; Ke-jian LIU ; Wen-peng WANG ; Chang XU ; Yu-zeng ZHANG ; Yun LIU
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):712-715
		                        		
		                        			
		                        			Skeletal fluorosis is a chronically metabolic bone disease with extensive hyperostosis osteosclerosis caused by long time exposure to fluoride. Skeletal fluorosis brings about a series of abnormal changes of the extremity, such as joint pain, joint stiffness, bone deformity, etc. Differentiation and maturation of osteoblasts were regulated by osteoclasts via Sema4D/Plexin-B1 signaling pathway. Furthermore, the differentiation and maturation of osteoclasts are conducted by osteoblasts via RANKL/RANK/OPG pathway. Both of these processes form a feedback circuit which is a key link in skeletal fluorosis. In this study, an osteoblast-osteoclast co-culture model in vitro was developed to illustrate the mechanism of skeletal fluorosis. With the increase of fluoride concentration, the expression level of Sema4D was decreased and TGF-β1 was increased continuously. OPG/RANKL mRNA level, however, increased gradually. On the basis of that, the inhibition of Sema4D/Plexin-B1/RhoA/ROCK signaling pathway caused by fluoride promoted the level of TGF-β1 and activated the proliferation of osteoblasts. In addition, osteroprotegerin (OPG) secreted by osteoblasts was up-regulated by fluoride. The competitive combination of OPG and RANKL was strengthened and the combination of RANKL and RANK was hindered. And then the differentiation and maturation of osteoclasts were inhibited, and bone absorption was weakened, leading to skeletal fluorosis.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antigens, CD
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Feedback, Physiological
		                        			;
		                        		
		                        			Fetus
		                        			;
		                        		
		                        			Fluorides
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			GTPase-Activating Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation, Developmental
		                        			;
		                        		
		                        			Osteoblasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Osteoclasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Osteogenesis
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Receptor Activator of Nuclear Factor-kappa B
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Cell Surface
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Semaphorins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Transforming Growth Factor beta1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			rho-Associated Kinases
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			rhoA GTP-Binding Protein
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.The function and meaning of receptor activator of NF-κB ligand in arterial calcification.
Bin NIE ; Shao-qiong ZHOU ; Xin FANG ; Shao-ying ZHANG ; Si-ming GUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):666-671
		                        		
		                        			
		                        			Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
		                        		
		                        		
		                        		
		                        			Acid Phosphatase
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Aorta
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Coculture Techniques
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Isoenzymes
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Monocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Osteoclasts
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Tartrate-Resistant Acid Phosphatase
		                        			;
		                        		
		                        			Vascular Calcification
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
5.Research on regulation mechanism of osteoclast differentiation.
Cai-yuan SONG ; Bing PENG ; Jia-yi SHEN ; Hong-ting JIN ; Lu-wei XIAO ; Pei-jian TONG
China Journal of Orthopaedics and Traumatology 2015;28(6):580-584
		                        		
		                        			
		                        			Osteoclasts are multinucleated giant cell, which derived from mononuclear myeloid hematopoietic stem cells with the function of bone absorption. Osteoclasts plays a key role in bone metabolism, therefore the body is very strict to regulation of osteoclastogenesis. Mobilization and differentiation of osteoclast maturation is a complex and sophisticated multi-level regulatory processes. In the relevant regulatory mechanisms, OPG/RANKL/RANK system plays a pivotal role in the process of osteoclast differentiation and maturation. Recent studies revealed that immune cells and osteoclasts were closely connect with each other in the field of bone metabolism, also provide a new therapeutic target for the treatment of bone diseases. The apoptosis of osteoclasts in bone metabolism have been payed more attention,while its mechanism is still not clear, which need further research.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Osteoclasts
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptor Activator of Nuclear Factor-kappa B
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
6.Adseverin mediates RANKL-induced osteoclastogenesis by regulating NFATc1.
Min Kyoung SONG ; Zang Hee LEE ; Hong Hee KIM
Experimental & Molecular Medicine 2015;47(12):e199-
		                        		
		                        			
		                        			Adseverin is a Ca2+-dependent actin filament-severing protein that has been reported to regulate exocytosis via rearrangements of the actin cytoskeleton in secretory cells. However, the role of adseverin in bone cells has not yet been well characterized. Here, we investigated the role of adseverin in osteoclastogenesis using primary osteoclast precursor cells. Adseverin expression was upregulated during RANKL (receptor activator of nuclear factor-kappaB ligand)-induced osteoclast differentiation. Moreover, genetic silencing of adseverin decreased the number of osteoclasts generated by RANKL. Adseverin knockdown also suppressed the RANKL-mediated induction of nuclear factor of activated T-cell c1 (NFATc1), which is a key transcription factor in osteoclastogenesis. In addition, adseverin knockdown impaired bone resorption and the secretion of bone-degrading enzymes from osteoclasts. These effects were accompanied by decreased NFATc1 expression and the activation of nuclear factor-kappaB. Collectively, our results indicate that adseverin has a crucial role in osteoclastogenesis by regulating NFATc1.
		                        		
		                        		
		                        		
		                        			Active Transport, Cell Nucleus
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Resorption/genetics/metabolism/pathology
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gelsolin/genetics/*metabolism
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice, Inbred ICR
		                        			;
		                        		
		                        			NF-kappa B/metabolism
		                        			;
		                        		
		                        			NFATC Transcription Factors/*metabolism
		                        			;
		                        		
		                        			Osteoclasts/*cytology/metabolism/pathology
		                        			;
		                        		
		                        			RANK Ligand/*metabolism
		                        			
		                        		
		                        	
7.Serum amyloid A inhibits RANKL-induced osteoclast formation.
Eunseo OH ; Ha Young LEE ; Hak Jung KIM ; Yoo Jung PARK ; Jeong Kon SEO ; Joon Seong PARK ; Yoe Sik BAE
Experimental & Molecular Medicine 2015;47(11):e194-
		                        		
		                        			
		                        			When mouse bone marrow-derived macrophages were stimulated with serum amyloid A (SAA), which is a major acute-phase protein, there was strong inhibition of osteoclast formation induced by the receptor activator of nuclear factor kappaB ligand. SAA not only markedly blocked the expression of several osteoclast-associated genes (TNF receptor-associated factor 6 and osteoclast-associated receptor) but also strongly induced the expression of negative regulators (MafB and interferon regulatory factor 8). Moreover, SAA decreased c-fms expression on the cell surface via shedding of the c-fms extracellular domain. SAA also restrained the fusion of osteoclast precursors by blocking intracellular ATP release. This inhibitory response of SAA is not mediated by the well-known SAA receptors (formyl peptide receptor 2, Toll-like receptor 2 (TLR2) or TLR4). These findings provide insight into a novel inhibitory role of SAA in osteoclastogenesis and suggest that SAA is an important endogenous modulator that regulates bone homeostasis.
		                        		
		                        		
		                        		
		                        			Adenosine Triphosphate/metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Gene Expression Regulation, Developmental
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Macrophages/*cytology/metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Osteoclasts/*cytology/metabolism
		                        			;
		                        		
		                        			RANK Ligand/*metabolism
		                        			;
		                        		
		                        			Receptor, Macrophage Colony-Stimulating Factor/genetics
		                        			;
		                        		
		                        			Receptors, Formyl Peptide/metabolism
		                        			;
		                        		
		                        			Serum Amyloid A Protein/*metabolism
		                        			;
		                        		
		                        			Toll-Like Receptor 2/metabolism
		                        			;
		                        		
		                        			Toll-Like Receptor 4/metabolism
		                        			
		                        		
		                        	
8.Influences of IL-6R antibody on PMMA bone cement-mediated expression of OPG and RANKL in synovial fibroblasts.
Ke TAO ; Hui ZENG ; De-ming XIAO ; Ao XIONG ; Jian WENG ; Bin KANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(2):241-246
		                        		
		                        			
		                        			Effect of interleukin-6 receptor (IL-6R) antibody on polymethyl methacrylate (PMMA) bone cement-mediated expression of osteoprotegerin (OPG) and receptor activator of nuclear factor-kappaB ligand (RANKL) in synovial fibroblasts was investigated. Synovial tissue obtained from total knee arthroplasty was digested and cultured. Inverted microscope was employed to observe the synovial cells and immunocytochemistry (SABC method) staining was used to identify synovial fibroblasts. This experiment was divided into three groups according to different culture media: PMMA group (75 μg/mL PMMA bone cement particles), IL-6R antibody group (10 ng/mL IL-6R antibody+75 μg/mL PMMA bone cement particles), and control group (no IL-6R antibody or PMMA bone cement particles). Influence of IL-6R antibody and PMMA on proliferation of synovial fibroblasts was measured by cell counting kit-8 (CCK-8). ELISA method was used to measure OPG and RANKL levels in culture solution. Fluorescence quantitative real-time PCR (FQ-PCR) was used to detect the expression of OPG and RANKL mRNA. After three consecutive passages, more than 95% of the primary synovial cells became long spindle fibroblast-like cells. SABC staining results showed that the fibroblast-like cells were negative for anti-CD68 antibody and positive for anti-vimentin antibody, with brown madder stained. CCK-8 test demonstrated that the absorbance (A) value at 450 nm was significantly lower in IL-6R antibody group than in PMMA group and control group (P<0.01), but there was no statistically significant difference in A value at 450 nm between the control group and PMMA group (P>0.05). Results of ELISA indicated that the expression of OPG was significantly higher in IL-6R antibody group than in PMMA group and control group (P<0.01). The expression of RANKL was inhibited (P<0.05), and the ratio of OPG/RANKL was significantly increased in IL-6R antibody group as compared with PMMA group and control group. There was no significant difference in the expression of OPG between control group and PMMA group (P>0.05), but the expression of RANKL was higher in PMMA group than in control group (P<0.05), and there was a significant difference in the ratio of OPG/RANKL between them (P<0.05). Results of FQ-PCR revealed the expression of RANKL mRNA was significantly inhibited (P<0.01) and the expression of OPG mRNA was significantly increased (P<0.01) in IL-6R antibody group as compared with PMMA group and control group. The expression of RANKL mRNA was higher in PMMA group than in control group (P<0.05), but the expression of OPG mRNA had no significant difference between them (P>0.05). IL-6R antibody could significantly increase the expression of OPG, but inhibit the expression of RANKL, which might provide a theoretical basis of molecular biology for the prevention and treatment of aseptic loosening of prosthesis.
		                        		
		                        		
		                        		
		                        			Antibodies
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Bone Cements
		                        			;
		                        		
		                        			Fibroblasts
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Polymethyl Methacrylate
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			Prostheses and Implants
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			biosynthesis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Receptors, Interleukin-6
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Synovial Fluid
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Effect of Erigeron Breviscapus on the expression of OPG/RANKL/RANK in osteoblasts and pre-osteoclasts in vitro.
Chang-Geng LIU ; Qi-Xian LUO ; Tian-You LING ; Ye-Yue MO ; Zi-Li CHENG ; Sheng-Gao HUANG ; Hui MO
Chinese Journal of Integrated Traditional and Western Medicine 2013;33(12):1658-1664
OBJECTIVETo study the effect of Erigeron Breviscapus (EB) at different concentrations and different intervention time points on the mRNA and protein expression of OPG/RANKL/RANK in MG63 osteoblast-like cells and RAW264. 7 pre-osteoclast cells cultured in vitro, thus exploring roles EB played in bone rebuilding and its mechanisms.
METHODSMG63 osteoblast-like cells and RAW264.7 pre-osteoclast cells were cultured in vitro. The 3rd passage cells were divided into the control group and different experimental groups. Total RNA and protein were respectively isolated from cells treated with different concentrations of EB (0, 0.001, 0.01, 0.1, and 1.0 mg/mL) for 48 h. Meanwhile, the protein was extracted from 0 and 1 mg/mL EB groups at 12, 24, and 48 h respectively. Expression of OPG mRNA and RANKL mRNA in MG63 osteoblast-like cells, and expression of RANK mRNA in RAW264.7 pre-osteoclast cells were detected by semi-quantitative RT-PCR. Expression of OPG protein and RANKL protein in MG63 osteoblast-like cells, and expression of RANK protein in RAW264. 7 pre-osteoclast cells were detected by Western blot.
RESULTSAlong with increased EB concentration, expression of OPG mRNA and protein in MG63 osteoblast-like cells was gradually lowered (P < 0.05) after 48-h intervention of EB, the expression of RANKL mRNA and protein in MG63 osteoblast-like gradually increased (P < 0.05); the expression of RANK mRNA in RAW264.7 pre-osteoclast cells increased (P < 0.05). But the expression of RANK mRNA was slightly lower in the 0.1 mg/mL EB group than in the 0.01 mg/mL EB group, and the expression of RANK protein in RAW264.7 pre-osteoclast cells gradually increased (P < 0.05). After treatment with 1 mg/mL EB for 12, 24, 48 h, the expression of OPG protein in MG63 osteoblast-like cells gradually decreased as time went by (P < 0.05), and the expression of RANKL protein in MG63 osteoblast-like and RANK protein in RAW264.7 pre-osteoclast cells gradually increased (P < 0.05). The expression of RANKL protein in RAW264.7 pre-osteoclast cells increased as time went by (P < 0.05).
CONCLUSIONEB could inhibit the expression of OPG in osteoblasts in a dose- and time-dependent manner, promote the expression of RANKL in osteoblasts and the secretion of RANK in pre-osteoclast, indicating EB might play roles in promoting bone resorption.
Animals ; Cell Differentiation ; Cell Line ; Drugs, Chinese Herbal ; pharmacology ; Erigeron ; Humans ; Mice ; Osteoblasts ; drug effects ; metabolism ; Osteoclasts ; drug effects ; metabolism ; Osteoprotegerin ; metabolism ; RANK Ligand ; metabolism ; RNA, Messenger ; genetics ; Receptor Activator of Nuclear Factor-kappa B ; metabolism
10.Effect of genistein on rat femoral bone metabolic activity in vitro.
Jian ZHOU ; Bao-Feng GE ; Ke-Ming CHEN ; Xiao-Ni MA ; Kui CHENG ; Xiao-Yu GUO ; Xiang LÜ
Acta Pharmaceutica Sinica 2013;48(6):960-964
		                        		
		                        			
		                        			This study is to investigate effects of genistein on rat femoral bone metabolic in vitro. Rat femoral tissues was isolated and randomly divided into two groups including control group and genistein (1 x 10(-5) mol x(-1)) group. Determinations of alkaline phosphatase (ALP) activity, calcium content and osteoprotegerin (OPG), type I-collagen (Collagen-I), RANKL, Runx-2 and bone morphogenetic protein (BMP-2) mRNA expression were done by real-time PCR. The results showed that 1 x 10(-5) mol x L(-1) genistein could increase the activity of ALP and contents of Ca, regulate bone metabolism activity of OPG, RANKL, BMP-2, Collagen-I and Runx-2 mRNA expression level. Genistein can significantly modulate bone metabolism related gene expression level of rat femoral tissue in vitro, and can increase calcium content and the activity of ALP.
		                        		
		                        		
		                        		
		                        			Alkaline Phosphatase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Morphogenetic Protein 2
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Calcium
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Collagen Type I
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Core Binding Factor Alpha 1 Subunit
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Enzyme Activation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Femur
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Genistein
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Osteoprotegerin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Phytoestrogens
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			RANK Ligand
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Real-Time Polymerase Chain Reaction
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail